370 research outputs found

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Commutation Time Estimator For PM BLDC Motor Torque Signature Enhancement

    Get PDF
    This paper presents the development of the commutation time estimator (CTE) for PM BLDC motor drives. The proposed scheme is aimed to enhance motor output torque by minimizing the generated torque ripples. The torque ripples originating from commutation instances cause spikes and dips in the motor output torque. The motor output torque could be enhanced by mitigating the phase current mismatch rate during phase current commutation period. This rate could be almost matched by introducing the commutation time estimator (CTE) in order to control the rate of the energized phase current to be matched with the de-energized phase rate. Results obtained have validated and verified the proposed CTE effectiveness with a 50% average reduction of the generated torque ripples in PM BLDC motor

    Measurement and Control of Torque Ripple-Induced Frame Torsional Vibration in a Surface Mount Permanent Magnet Machine

    Get PDF
    A sensor to measure the stator torsional vibration due to torque ripple produced by a surface mount permanent magnet machine is first described. The sensor is relatively inexpensive and is straight forward to incorporate into a drive system. Experiments are performed to validate that the voltage produced by the sensor is linearly related to torque ripple amplitude. Closed-loop controllers are then described that adjust the stator current harmonics applied to the machine to achieve a commanded average torque while mitigating measured torsional vibration. Simulation and experimental results are used to demonstrate the effectiveness of the control techniques

    In-wheel motor vibration control for distributed-driven electric vehicles:A review

    Get PDF
    Efficient, safe, and comfortable electric vehicles (EVs) are essential for the creation of a sustainable transport system. Distributed-driven EVs, which often use in-wheel motors (IWMs), have many benefits with respect to size (compactness), controllability, and efficiency. However, the vibration of IWMs is a particularly important factor for both passengers and drivers, and it is therefore crucial for a successful commercialization of distributed-driven EVs. This paper provides a comprehensive literature review and state-of-the-art vibration-source-analysis and -mitigation methods in IWMs. First, selection criteria are given for IWMs, and a multidimensional comparison for several motor types is provided. The IWM vibration sources are then divided into internally-, and externally-induced vibration sources and discussed in detail. Next, vibration reduction methods, which include motor-structure optimization, motor controller, and additional control-components, are reviewed. Emerging research trends and an outlook for future improvement aims are summarized at the end of the paper. This paper can provide useful information for researchers, who are interested in the application and vibration mitigation of IWMs or similar topics

    Direct Torque Control of BLDC Motor with Constant Switching Frequency

    Get PDF
    Direct torque control (DTC) has become a popular technique for brushless motor control because it provides fast dynamic torque response. Hysteresis band control is the most popular techniques used in the DTC BLDC motor drive caused the simplest technique. However the conventional DTC have problems as switching frequency that varies with operating conditions and high torque ripple. This paper presents direct torque control (DTC) of BLDC motor with constant switching frequency torque controller. The torque ripple will get reduced by this method constant switching frequency operation. The feasibility of this method in minimizing the torque ripple is verified through some simulation results

    Stability analysis and speed control of brushless DC motor based on self-ameliorate soft switching control methods

    Get PDF
    In recent years, electric vehicles are the large-scale spread of the transportation field has led to the emergence of brushless direct current (DC) motors (BLDCM), which are mostly utilized in electrical vehicle systems. The speed control of a BLDCM is a subsystem, consisting of torque, flux hysteresis comparators, and appropriate switching logic of an inverter. Due to the sudden load torque variation and improper switching pulse, the speed of the BLDCM is not maintained properly. In recent research, the BLDC current control method gives a better way to control the speed of the motor. Also, the rotor position information should be the need for feedback control of the power electronic converters to varying the appropriate pulse width modulation (PWM) of the inverter. The proposed optimization work controls the switching device to manage the power supply BLDCM. In this proposed self-ameliorate soft switching (SASS) system is a simple and effective way for BLDC motor current control technology, a proposed control strategy is intended to stabilize the speed of the BLDCM at different load torque conditions. The proposed SASS system method is analyzing hall-based sensor values continuously. The suggested model is simulated using the MATLAB Simulink tool, and the results reveal that the maximum steady-state error value achieved is 4.2, as well as a speedy recovery of the BLDCM's speed

    Linear motor motion control using a learning feedforward controller

    Get PDF
    The design and realization of an online learning motion controller for a linear motor is presented, and its usefulness is evaluated. The controller consists of two components: (1) a model-based feedback component, and (2) a learning feedforward component. The feedback component is designed on the basis of a simple second-order linear model, which is known to have structural errors. In the design, an emphasis is placed on robustness. The learning feedforward component is a neural-network-based controller, comprised of a one-hidden-layer structure with second-order B-spline basis functions. Simulations and experimental evaluations show that, with little effort, a high-performance motion system can be obtained with this approach

    Cogging torque reduction in brushless motors by a nonlinear control technique

    Get PDF
    This work addresses the problem of mitigating the effects of the cogging torque in permanent magnet synchronous motors, particularly brushless motors, which is a main issue in precision electric drive applications. In this work, a method for mitigating the effects of the cogging torque is proposed, based on the use of a nonlinear automatic control technique known as feedback linearization that is ideal for underactuated dynamic systems. The aim of this work is to present an alternative to classic solutions based on the physical modification of the electrical machine to try to suppress the natural interaction between the permanent magnets and the teeth of the stator slots. Such modifications of electric machines are often expensive because they require customized procedures, while the proposed method does not require any modification of the electric drive. With respect to other algorithmic-based solutions for cogging torque reduction, the proposed control technique is scalable to different motor parameters, deterministic, and robust, and hence easy to use and verify for safety-critical applications. As an application case example, the work reports the reduction of the oscillations for the angular position control of a permanent magnet synchronous motor vs. classic PI (proportional-integrative) cascaded control. Moreover, the proposed algorithm is suitable to be implemented in low-cost embedded control units

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers
    corecore