379 research outputs found

    IONet: Learning to Cure the Curse of Drift in Inertial Odometry

    Full text link
    Inertial sensors play a pivotal role in indoor localization, which in turn lays the foundation for pervasive personal applications. However, low-cost inertial sensors, as commonly found in smartphones, are plagued by bias and noise, which leads to unbounded growth in error when accelerations are double integrated to obtain displacement. Small errors in state estimation propagate to make odometry virtually unusable in a matter of seconds. We propose to break the cycle of continuous integration, and instead segment inertial data into independent windows. The challenge becomes estimating the latent states of each window, such as velocity and orientation, as these are not directly observable from sensor data. We demonstrate how to formulate this as an optimization problem, and show how deep recurrent neural networks can yield highly accurate trajectories, outperforming state-of-the-art shallow techniques, on a wide range of tests and attachments. In particular, we demonstrate that IONet can generalize to estimate odometry for non-periodic motion, such as a shopping trolley or baby-stroller, an extremely challenging task for existing techniques.Comment: To appear in AAAI18 (Oral

    AUV planning and calibration method considering concealment in uncertain environments

    Get PDF
    IntroductionAutonomous underwater vehicles (AUVs) are required to thoroughly scan designated areas during underwater missions. They typically follow a zig-zag trajectory to achieve full coverage. However, effective coverage can be challenging in complex environments due to the accumulation and drift of navigation errors. Possible solutions include surfacing for satellite positioning or underwater acoustic positioning using transponders on other vehicles. Nevertheless, surfacing or active acoustics can compromise stealth during reconnaissance missions in hostile areas by revealing the vehicle’s location.MethodsWe propose calibration and planning strategies based on error models and acoustic positioning to address this challenge. Acoustic markers are deployed via surface ships to minimize navigation errors while maintaining stealth. And a new path planning method using a traceless Kalman filter and acoustic localization is proposed to achieve full-area coverage of AUVs. By analyzing the statistics of accumulated sensor errors, we optimize the positions of acoustic markers to communicate with AUVs and achieve better coverage. AUV trajectory concealment is achieved during detection by randomizing the USV navigation trajectory and irregularizing the locations of acoustic marker.ResultsThe proposed method enables the cumulative determination of the absolute position of a target with low localization error in a side-scan sonar-based search task. Simulations based on large-scale maps demonstrate the effectiveness and robustness of the proposed algorithm.DiscussionSolving the problem of accumulating underwater localization errors based on inertial navigation by error modeling and acoustic calibration is a typical way. In this paper, we have implemented a method to solve the localization error in a search scenario where stealth is considered

    Indoor Geo-location And Tracking Of Mobile Autonomous Robot

    Get PDF
    The field of robotics has always been one of fascination right from the day of Terminator. Even though we still do not have robots that can actually replicate human action and intelligence, progress is being made in the right direction. Robotic applications range from defense to civilian, in public safety and fire fighting. With the increase in urban-warfare robot tracking inside buildings and in cities form a very important application. The numerous applications range from munitions tracking to replacing soldiers for reconnaissance information. Fire fighters use robots for survey of the affected area. Tracking robots has been limited to the local area under consideration. Decision making is inhibited due to limited local knowledge and approximations have to be made. An effective decision making would involve tracking the robot in earth co-ordinates such as latitude and longitude. GPS signal provides us sufficient and reliable data for such decision making. The main drawback of using GPS is that it is unavailable indoors and also there is signal attenuation outdoors. Indoor geolocation forms the basis of tracking robots inside buildings and other places where GPS signals are unavailable. Indoor geolocation has traditionally been the field of wireless networks using techniques such as low frequency RF signals and ultra-wideband antennas. In this thesis we propose a novel method for achieving geolocation and enable tracking. Geolocation and tracking are achieved by a combination of Gyroscope and encoders together referred to as the Inertial Navigation System (INS). Gyroscopes have been widely used in aerospace applications for stabilizing aircrafts. In our case we use gyroscope as means of determining the heading of the robot. Further, commands can be sent to the robot when it is off balance or off-track. Sensors are inherently error prone; hence the process of geolocation is complicated and limited by the imperfect mathematical modeling of input noise. We make use of Kalman Filter for processing erroneous sensor data, as it provides us a robust and stable algorithm. The error characteristics of the sensors are input to the Kalman Filter and filtered data is obtained. We have performed a large set of experiments, both indoors and outdoors to test the reliability of the system. In outdoors we have used the GPS signal to aid the INS measurements. When indoors we utilize the last known position and extrapolate to obtain the GPS co-ordinates

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    A Framework for Life Cycle Cost Estimation of a Product Family at the Early Stage of Product Development

    Get PDF
    A cost estimation method is required to estimate the life cycle cost of a product family at the early stage of product development in order to evaluate the product family design. There are difficulties with existing cost estimation techniques in estimating the life cycle cost for a product family at the early stage of product development. This paper proposes a framework that combines a knowledge based system and an activity based costing techniques in estimating the life cycle cost of a product family at the early stage of product development. The inputs of the framework are the product family structure and its sub function. The output of the framework is the life cycle cost of a product family that consists of all costs at each product family level and the costs of each product life cycle stage. The proposed framework provides a life cycle cost estimation tool for a product family at the early stage of product development using high level information as its input. The framework makes it possible to estimate the life cycle cost of various product family that use any types of product structure. It provides detailed information related to the activity and resource costs of both parts and products that can assist the designer in analyzing the cost of the product family design. In addition, it can reduce the required amount of information and time to construct the cost estimation system

    Розвиток теорії автономного визначення навігаційних параметрів рухомих та нерухомих об’єктів

    Get PDF
    Дисертаційну роботу присвячено вирішенню наукової проблеми створення теорії нових способів автономного визначення навігаційних параметрів рухомих та нерухомих об’єктів шляхом створення методів визначення широти і довготи за допомогою інерціально-вимірювального модулю на нерухомій основі, визначення широти та довготи та курсу на рухомій основі, що дозволяє в порівнянні з традиційними алгоритмами БІНС обходитися без інтегрування показників акселерометрів, а визначення довготи потребує лише інтегрування показників гіроскопів

    Full-body human motion reconstruction with sparse joint tracking using flexible sensors

    Get PDF
    Human motion tracking is a fundamental building block for various applications including computer animation, human-computer interaction, healthcare, etc. To reduce the burden of wearing multiple sensors, human motion prediction from sparse sensor inputs has become a hot topic in human motion tracking. However, such predictions are non-trivial as i) the widely adopted data-driven approaches can easily collapse to average poses. ii) the predicted motions contain unnatural jitters. In this work, we address the aforementioned issues by proposing a novel framework which can accurately predict the human joint moving angles from the signals of only four flexible sensors, thereby achieving the tracking of human joints in multi-degrees of freedom. Specifically, we mitigate the collapse to average poses by implementing the model with a Bi-LSTM neural network that makes full use of short-time sequence information; we reduce jitters by adding a median pooling layer to the network, which smooths consecutive motions. Although being bio-compatible and ideal for improving the wearing experience, the flexible sensors are prone to aging which increases prediction errors. Observing that the aging of flexible sensors usually results in drifts of their resistance ranges, we further propose a novel dynamic calibration technique to rescale sensor ranges, which further improves the prediction accuracy. Experimental results show that our method achieves a low and stable tracking error of 4.51 degrees across different motion types with only four sensors
    corecore