907 research outputs found

    Securing cloud-based data analytics: A practical approach

    Get PDF
    The ubiquitous nature of computers is driving a massive increase in the amount of data generated by humans and machines. The shift to cloud technologies is a paradigm change that offers considerable financial and administrative gains in the effort to analyze these data. However, governmental and business institutions wanting to tap into these gains are concerned with security issues. The cloud presents new vulnerabilities and is dominated by new kinds of applications, which calls for new security solutions. In the direction of analyzing massive amounts of data, tools like MapReduce, Apache Storm, Dryad and higher-level scripting languages like Pig Latin and DryadLINQ have significantly improved corresponding tasks for software developers. The equally important aspect of securing computations performed by these tools and ensuring confidentiality of data has seen very little support emerge for programmers. In this dissertation, we present solutions to a. secure computations being run in the cloud by leveraging BFT replication coupled with fault isolation and b. secure data from being leaked by computing directly on encrypted data. For securing computations (a.), we leverage a combination of variable-degree clustering, approximated and offline output comparison, smart deployment, and separation of duty to achieve a parameterized tradeoff between fault tolerance and overhead in practice. We demonstrate the low overhead achieved with our solution when securing data-flow computations expressed in Apache Pig, and Hadoop. Our solution allows assured computation with less than 10 percent latency overhead as shown by our evaluation. For securing data (b.), we present novel data flow analyses and program transformations for Pig Latin and Apache Storm, that automatically enable the execution of corresponding scripts on encrypted data. We avoid fully homomorphic encryption because of its prohibitively high cost; instead, in some cases, we rely on a minimal set of operations performed by the client. We present the algorithms used for this translation, and empirically demonstrate the practical performance of our approach as well as improvements for programmers in terms of the effort required to preserve data confidentiality

    TSKY: a dependable middleware solution for data privacy using public storage clouds

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaThis dissertation aims to take advantage of the virtues offered by data storage cloud based systems on the Internet, proposing a solution that avoids security issues by combining different providers’ solutions in a vision of a cloud-of-clouds storage and computing. The solution, TSKY System (or Trusted Sky), is implemented as a middleware system, featuring a set of components designed to establish and to enhance conditions for security, privacy, reliability and availability of data, with these conditions being secured and verifiable by the end-user, independently of each provider. These components, implement cryptographic tools, including threshold and homomorphic cryptographic schemes, combined with encryption, replication, and dynamic indexing mecha-nisms. The solution allows data management and distribution functions over data kept in different storage clouds, not necessarily trusted, improving and ensuring resilience and security guarantees against Byzantine faults and at-tacks. The generic approach of the TSKY system model and its implemented services are evaluated in the context of a Trusted Email Repository System (TSKY-TMS System). The TSKY-TMS system is a prototype that uses the base TSKY middleware services to store mailboxes and email Messages in a cloud-of-clouds

    New directions for remote data integrity checking of cloud storage

    Get PDF
    Cloud storage services allow data owners to outsource their data, and thus reduce their workload and cost in data storage and management. However, most data owners today are still reluctant to outsource their data to the cloud storage providers (CSP), simply because they do not trust the CSPs, and have no confidence that the CSPs will secure their valuable data. This dissertation focuses on Remote Data Checking (RDC), a collection of protocols which can allow a client (data owner) to check the integrity of data outsourced at an untrusted server, and thus to audit whether the server fulfills its contractual obligations. Robustness has not been considered for the dynamic RDCs in the literature. The R-DPDP scheme being designed is the first RDC scheme that provides robustness and, at the same time, supports dynamic data updates, while requiring small, constant, client storage. The main challenge that has to be overcome is to reduce the client-server communication during updates under an adversarial setting. A security analysis for R-DPDP is provided. Single-server RDCs are useful to detect server misbehavior, but do not have provisions to recover damaged data. Thus in practice, they should be extended to a distributed setting, in which the data is stored redundantly at multiple servers. The client can use RDC to check each server and, upon having detected a corrupted server, it can repair this server by retrieving data from healthy servers, so that the reliability level can be maintained. Previously, RDC has been investigated for replication-based and erasure coding-based distributed storage systems. However, RDC has not been investigated for network coding-based distributed storage systems that rely on untrusted servers. RDC-NC is the first RDC scheme for network coding-based distributed storage systems to ensure data remain intact when faced with data corruption, replay, and pollution attacks. Experimental evaluation shows that RDC-NC is inexpensive for both the clients and the servers. The setting considered so far outsources the storage of the data, but the data owner is still heavily involved in the data management process (especially during the repair of damaged data). A new paradigm is proposed, in which the data owner fully outsources both the data storage and the management of the data. In traditional distributed RDC schemes, the repair phase imposes a significant burden on the client, who needs to expend a significant amount of computation and communication, thus, it is very difficult to keep the client lightweight. A new self-repairing concept is developed, in which the servers are responsible to repair the corruption, while the client acts as a lightweight coordinator during repair. To realize this new concept, two novel RDC schemes, RDC-SR and ERDC-SR, are designed for replication-based distributed storage systems, which enable Server-side Repair and minimize the load on the client side. Version control systems (VCS) provide the ability to track and control changes made to the data over time. The changes are usually stored in a VCS repository which, due to its massive size, is often hosted at an untrusted CSP. RDC can be used to address concerns about the untrusted nature of the VCS server by allowing a data owner to periodically check that the server continues to store the data. The RDC-AVCS scheme being designed relies on RDC to ensure all the data versions are retrievable from the untrusted server over time. The RDC-AVCS prototype built on top of Apache SVN only incurs a modest decrease in performance compared to a regular (non-secure) SVN system

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud Computing

    Get PDF
    Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, thus if being deployed in the clouds, would render cloud computing more expensive than the on-premises counterpart. To achieve verifiability at a reasonable cost, we leverage game theory and propose a smart contract based solution. In a nutshell, a client lets two clouds compute the same task, and uses smart contracts to stimulate tension, betrayal and distrust between the clouds, so that rational clouds will not collude and cheat. In the absence of collusion, verification of correctness can be done easily by crosschecking the results from the two clouds. We provide a formal analysis of the games induced by the contracts, and prove that the contracts will be effective under certain reasonable assumptions. By resorting to game theory and smart contracts, we are able to avoid heavy cryptographic protocols. The client only needs to pay two clouds to compute in the clear, and a small transaction fee to use the smart contracts. We also conducted a feasibility study that involves implementing the contracts in Solidity and running them on the official Ethereum network.Comment: Published in ACM CCS 2017, this is the full version with all appendice
    • …
    corecore