24 research outputs found

    Three dimensional study to quantify the relationship between facial hard and soft tissue movement as a result of orthognathic surgery

    Get PDF
    Introduction Prediction of soft tissue changes following orthognathic surgery has been frequently attempted in the past decades. It has gradually progressed from the classic ā€œcut and pasteā€ of photographs to the computer assisted 2D surgical prediction planning; and finally, comprehensive 3D surgical planning was introduced to help surgeons and patients to decide on the magnitude and direction of surgical movements as well as the type of surgery to be considered for the correction of facial dysmorphology. A wealth of experience was gained and numerous published literature is available which has augmented the knowledge of facial soft tissue behaviour and helped to improve the ability to closely simulate facial changes following orthognathic surgery. This was particularly noticed following the introduction of the three dimensional imaging into the medical research and clinical applications. Several approaches have been considered to mathematically predict soft tissue changes in three dimensions, following orthognathic surgery. The most common are the Finite element model and Mass tensor Model. These were developed into software packages which are currently used in clinical practice. In general, these methods produce an acceptable level of prediction accuracy of soft tissue changes following orthognathic surgery. Studies, however, have shown a limited prediction accuracy at specific regions of the face, in particular the areas around the lips. Aims The aim of this project is to conduct a comprehensive assessment of hard and soft tissue changes following orthognathic surgery and introduce a new method for prediction of facial soft tissue changes. ā€ƒ Methodology The study was carried out on the pre- and post-operative CBCT images of 100 patients who received their orthognathic surgery treatment at Glasgow dental hospital and school, Glasgow, UK. Three groups of patients were included in the analysis; patients who underwent Le Fort I maxillary advancement surgery; bilateral sagittal split mandibular advancement surgery or bimaxillary advancement surgery. A generic facial mesh was used to standardise the information obtained from individual patientā€™s facial image and Principal component analysis (PCA) was applied to interpolate the correlations between the skeletal surgical displacement and the resultant soft tissue changes. The identified relationship between hard tissue and soft tissue was then applied on a new set of preoperative 3D facial images and the predicted results were compared to the actual surgical changes measured from their post-operative 3D facial images. A set of validation studies was conducted. To include: ā€¢ Comparison between voxel based registration and surface registration to analyse changes following orthognathic surgery. The results showed there was no statistically significant difference between the two methods. Voxel based registration, however, showed more reliability as it preserved the link between the soft tissue and skeletal structures of the face during the image registration process. Accordingly, voxel based registration was the method of choice for superimposition of the pre- and post-operative images. The result of this study was published in a refereed journal. ā€¢ Direct DICOM slice landmarking; a novel technique to quantify the direction and magnitude of skeletal surgical movements. This method represents a new approach to quantify maxillary and mandibular surgical displacement in three dimensions. The technique includes measuring the distance of corresponding landmarks digitized directly on DICOM image slices in relation to three dimensional reference planes. The accuracy of the measurements was assessed against a set of ā€œgold standardā€ measurements extracted from simulated model surgery. The results confirmed the accuracy of the method within 0.34mm. Therefore, the method was applied in this study. The results of this validation were published in a peer refereed journal. ā€¢ The use of a generic mesh to assess soft tissue changes using stereophotogrammetry. The generic facial mesh played a major role in the soft tissue dense correspondence analysis. The conformed generic mesh represented the geometrical information of the individualā€™s facial mesh on which it was conformed (elastically deformed). Therefore, the accuracy of generic mesh conformation is essential to guarantee an accurate replica of the individual facial characteristics. The results showed an acceptable overall mean error of the conformation of generic mesh 1 mm. The results of this study were accepted for publication in peer refereed scientific journal. Skeletal tissue analysis was performed using the validated ā€œDirect DICOM slices landmarking methodā€ while soft tissue analysis was performed using Dense correspondence analysis. The analysis of soft tissue was novel and produced a comprehensive description of facial changes in response to orthognathic surgery. The results were accepted for publication in a refereed scientific Journal. The main soft tissue changes associated with Le Fort I were advancement at the midface region combined with widening of the paranasal, upper lip and nostrils. Minor changes were noticed at the tip of the nose and oral commissures. The main soft tissue changes associated with mandibular advancement surgery were advancement and downward displacement of the chin and lower lip regions, limited widening of the lower lip and slight reversion of the lower lip vermilion combined with minimal backward displacement of the upper lip were recorded. Minimal changes were observed on the oral commissures. The main soft tissue changes associated with bimaxillary advancement surgery were generalized advancement of the middle and lower thirds of the face combined with widening of the paranasal, upper lip and nostrils regions. In Le Fort I cases, the correlation between the changes of the facial soft tissue and the skeletal surgical movements was assessed using PCA. A statistical method known as ā€™Leave one out cross validationā€™ was applied on the 30 cases which had Le Fort I osteotomy surgical procedure to effectively utilize the data for the prediction algorithm. The prediction accuracy of soft tissue changes showed a mean error ranging between (0.0006mmĀ±0.582) at the nose region to (-0.0316mmĀ±2.1996) at the various facial regions

    Virtual Reality Simulation of Glenoid Reaming Procedure

    Get PDF
    Glenoid reaming is a bone machining operation in Total Shoulder Arthroplasty (TSA) in which the glenoid bone is resurfaced to make intimate contact with implant undersurface. While this step is crucial for the longevity of TSA, many surgeons find it technically challenging. With the recent advances in Virtual Reality (VR) simulations, it has become possible to realistically replicate complicated operations without any need for patients or cadavers, and at the same time, provide quantitative feedback to improve surgeons\u27 psycho-motor skills. In light of these advantages, the current thesis intends to develop tools and methods required for construction of a VR simulator for glenoid reaming, in an attempt to construct a reliable tool for preoperative training and planning for surgeons involved with TSA. Towards the end, this thesis presents computational algorithms to appropriately represent surgery tool and bone in the VR environment, determine their intersection and compute realistic haptic feedback based on the intersections. The core of the computations is constituted by sampled geometrical representations of both objects. In particular, point cloud model of the tool and voxelized model of bone - that is derived from Computed Tomography (CT) images - are employed. The thesis shows how to efficiently construct these models and adequately represent them in memory. It also elucidates how to effectively use these models to rapidly determine tool-bone collisions and account for bone removal momentarily. Furthermore, the thesis applies cadaveric experimental data to study the mechanics of glenoid reaming and proposes a realistic model for haptic computations. The proposed model integrates well with the developed computational tools, enabling real-time haptic and graphic simulation of glenoid reaming. Throughout the thesis, a particular emphasis is placed upon computational efficiency, especially on the use of parallel computing using Graphics Processing Units (GPUs). Extensive implementation results are also presented to verify the effectiveness of the developments. Not only do the results of this thesis advance the knowledge in the simulation of glenoid reaming, but they also rigorously contribute to the broader area of surgery simulation, and can serve as a step forward to the wider implementation of VR technology in surgeon training programs

    Shape classification: towards a mathematical description of the face

    Get PDF
    Recent advances in biostereometric techniques have led to the quick and easy acquisition of 3D data for facial and other biological surfaces. This has led facial surgeons to express dissatisfaction with landmark-based methods for analysing the shape of the face which use only a small part of the data available, and to seek a method for analysing the face which maximizes the use of this extensive data set. Scientists working in the field of computer vision have developed a variety of methods for the analysis and description of 2D and 3D shape. These methods are reviewed and an approach, based on differential geometry, is selected for the description of facial shape. For each data point, the Gaussian and mean curvatures of the surface are calculated. The performance of three algorithms for computing these curvatures are evaluated for mathematically generated standard 3D objects and for 3D data obtained from an optical surface scanner. Using the signs of these curvatures, the face is classified into eight 'fundamental surface types' - each of which has an intuitive perceptual meaning. The robustness of the resulting surface type description to errors in the data is determined together with its repeatability. Three methods for comparing two surface type descriptions are presented and illustrated for average male and average female faces. Thus a quantitative description of facial change, or differences between individual's faces, is achieved. The possible application of artificial intelligence techniques to automate this comparison is discussed. The sensitivity of the description to global and local changes to the data, made by mathematical functions, is investigated. Examples are given of the application of this method for describing facial changes made by facial reconstructive surgery and implications for defining a basis for facial aesthetics using shape are discussed. It is also applied to investigate the role played by the shape of the surface in facial recognition
    corecore