392 research outputs found

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Effective bootstrapping of Peer-to Peer networks over Mobile Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) and Peer-to-Peer (P2P) networks are vigorous, revolutionary communication technologies in the 21st century. They lead the trend of decentralization. Decentralization will ultimately win clients over client/server model, because it gives ordinary network users more control, and stimulates their active participation. It is a determinant factor in shaping the future of networking. MANETs and P2P networks are very similar in nature. Both are dynamic, distributed. Both use multi-hop broadcast or multicast as major pattern of traffic. Both set up connection by self-organizing and maintain connection by self-healing. Embodying the slogan networking without networks, both abandoned traditional client/server model and disclaimed pre-existing infrastructure. However, their status quo levels of real world application are widely divergent. P2P networks are now accountable for about 50 ~ 70% internet traffic, while MANETs are still primarily in the laboratory. The interesting and confusing phenomenon has sparked considerable research effort to transplant successful approaches from P2P networks into MANETs. While most research in the synergy of P2P networks and MANETs focuses on routing, the network bootstrapping problem remains indispensable for any such transplantation to be realized. The most pivotal problems in bootstrapping are: (1) automatic configuration of nodes addresses and IDs, (2) topology discovery and transformation in different layers and name spaces. In this dissertation research, we have found novel solutions for these problems. The contributions of this dissertation are: (1) a non-IP, flat address automatic configuration scheme, which integrates lower layer addresses and P2P IDs in application layer and makes simple cryptographical assignment possible. A related paper entitled Pastry over Ad-Hoc Networks with Automatic Flat Address Configuration was submitted to Elsevier Journal of Ad Hoc Networks in May. (2) an effective ring topology construction algorithm which builds perfect ring in P2P ID space using only simplest multi-hop unicast or multicast. Upon this ring, popular structured P2P networks like Chord, Pastry could be built with great ease. A related paper entitled Chord Bootstrapping on MANETs - All Roads lead to Rome will be ready for submission after defense of the dissertation

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    7. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze

    Get PDF
    In dem vorliegenden Tagungsband sind die Beiträge des Fachgesprächs Drahtlose Sensornetze 2008 zusammengefasst. Ziel dieses Fachgesprächs ist es, Wissenschaftlerinnen und Wissenschaftler aus diesem Gebiet die Möglichkeit zu einem informellen Austausch zu geben – wobei immer auch Teilnehmer aus der Industrieforschung willkommen sind, die auch in diesem Jahr wieder teilnehmen.Das Fachgespräch ist eine betont informelle Veranstaltung der GI/ITG-Fachgruppe „Kommunikation und Verteilte Systeme“ (www.kuvs.de). Es ist ausdrücklich keine weitere Konferenz mit ihrem großen Overhead und der Anforderung, fertige und möglichst „wasserdichte“ Ergebnisse zu präsentieren, sondern es dient auch ganz explizit dazu, mit Neueinsteigern auf der Suche nach ihrem Thema zu diskutieren und herauszufinden, wo die Herausforderungen an die zukünftige Forschung überhaupt liegen.Das Fachgespräch Drahtlose Sensornetze 2008 findet in Berlin statt, in den Räumen der Freien Universität Berlin, aber in Kooperation mit der ScatterWeb GmbH. Auch dies ein Novum, es zeigt, dass das Fachgespräch doch deutlich mehr als nur ein nettes Beisammensein unter einem Motto ist.Für die Organisation des Rahmens und der Abendveranstaltung gebührt Dank den beiden Mitgliedern im Organisationskomitee, Kirsten Terfloth und Georg Wittenburg, aber auch Stefanie Bahe, welche die redaktionelle Betreuung des Tagungsbands übernommen hat, vielen anderen Mitgliedern der AG Technische Informatik der FU Berlin und natürlich auch ihrem Leiter, Prof. Jochen Schiller

    Peer-to-peer overlay in mobile ad-hoc networks

    Get PDF
    Wireless multi-hop networks such as mobile ad-hoc (MANET) or wireless mesh networks (WMN) have attracted big research efforts during the last years as they have huge potential in several areas such as military communications, fast infrastructure replacement during emergency operations, extension of hotspots or as an alternative communication system. Due to various reasons, such as characteristics of wireless links, multi-hop forwarding operation, and mobility of nodes, performance of traditional peer-to-peer applications is rather low in such networks. In this book chapter, we provide a comprehensive and in-depth survey on recent research on various approaches to provide peer-to-peer services in wireless multi-hop networks. The causes and problems for low performance of traditional approaches are discussed. Various representative alternative approaches to couple interactions between the peer-to-peer overlay and the network layer are examined and compared. Some open questions are discussed to stimulate further research in this area. © 2010 Springer Science+Business Media, LLC

    A one hop overlay system for Mobile Ad Hoc Networks

    Get PDF
    Peer-to-Peer (P2P) overlays were initially proposed for use with wired networks. However, the very rapid proliferation of wireless communication technology has prompted a need for adoption of P2P systems in mobile networks too. There are many common characteristics between P2P overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, a dynamic nature and changing topology are the most commonly shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality and MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. P2P overlay networks can be deployed over MANET to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET does not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. This thesis proposes a novel approach, OneHopOverlay4MANET, to exploit the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. OneHopOverlay4MANET constructs a cross-layer channel to permit direct exchange of routing information between the Application layer, where the overlay operates, and the MANET underlay layer. Consequently, underlay routing information can be shared and used by the overlay. Thus, OneHopOverlay4MANET reduces the typical management traffic when deploying traditional P2P systems over MANET. Moreover, as a result of building one hop overlay, OneHopOverlay4MANET can eliminate the mismatching issue between overlay and underlay and hence resolve key lookups in a short time, enhancing the performance of the overlay. v In this thesis, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. OneHopOverlay4MANET has been combined with two proactive underlays (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). In addition, the performance of the proposed system over OLSR has been compared to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. The results show that better performance can be achieved using OneHopOverlay4MANET
    corecore