174 research outputs found

    Performance Enhancement of Ultra Wideband WPAN using Narrowband Interference Mitigation Techniques

    Get PDF
    A new promising technique adopted by 4G community is ultra-wideband technology, which offers a solution for high bandwidth, high data rate, low cost, low power consumption, position location capability etc. A conventional type of UWB communication is impulse radio, where very short transient pulses are transmitted rather than a modulated carrier. Consequently, the spectrum is spread over several GHz, complying with the definition of UWB. Currently, the Rake receiver used for spread spectrum is considered a very promising candidate for UWB reception, due to its capability of collecting multipath components. Since UWB signals occupy such a large bandwidth, they operate as an overlay system with other existing narrowband (NB) radio systems overlapping with their bands. In order to ensure a robust communication link, the issue of coexistence and interference of UWB systems with current indoor wireless systems must be considered. Ultra Wideband technology with its application, advantages and disadvantages are discussed in detail. Design of UWB short pulse and a detail study IEEE 802.15.3a UWB channel models statistical characteristics have been analyzed through simulation. Simulation studies are performed and improved techniques are suggested for interference reduction in both Impulse Radio based UWB and Transmitted Reference type of UWB system. Modified TR-UWB receiver with UWB pulse design at transmitter end and notch filtering at receiver’s front end proved to be more efficient in single NBI, multiple NBI and WBI suppression. Extensive simulation studies to support the efficacy of the proposed schemes are carried out in the MATLAB. Bit error rate (BER) performance study for different data rates over different UWB channel models are also analyzed using proposed receiver models. Performance improvement of TR-UWB system is noticed using the proposed techniques

    Design and analysis of two port MIMO antennas with wideband isolation

    Get PDF
    Ultrawideband (UWB) technology has rapidly gained popularity and demand for recent wireless communication systems after the allocation of 3.1- 10.6 GHz by the Federal Communications Commission (FCC) for UWB applications. Since then, a myriad of research opportunities and challenges exist for the design of UWB antenna systems for application in high speed wireless devices. Multiple-Input-Multiple-Output (MIMO) systems provide a significant increase in channel capacity without the need of additional bandwidth or transmit power by deploying multiple antennas for transmission to achieve an array gain and diversity gain, thereby improving the spectral efficiency and reliability. Since MIMO systems employ multiple antennas, they require high decoupling between antenna elements. Overall UWB MIMO systems require a high isolation of less than -16 dB and also a compact size for compatibility with integrated circuits. This thesis focuses on the analysis and design of MIMO antennas with a compact planar profile that have an operating range in the entire UWB (3.1- 10.6 GHz) and desired antenna performance characteristics. This dissertation presents the work on the design of two- element MIMO antennas and various isolation structures and mechanisms to reduce the mutual coupling between the two elements, out of which two major antenna designs are proposed and analyzed separately for their isolation, bandwidth and radiation characteristics. Both MIMO antenna systems have a significant operating bandwidth covering almost the entire UWB and together with the proposed isolation structures are able to achieve isolation more than -16 dB

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen

    Evaluation of the Wi-Fi technique for use in a navigated orthopedic surgery

    Get PDF
    Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.

    Discrete interferences optimum beamformer in correlated signal and interfering noise

    Get PDF
    This paper introduces a significant special situation where the noise is a collection of D-plane interference signals and the correlated noise of D+1 is less than the number of array components. An optimal beamforming processor based on the minimum variance distortionless response (MVDR) generates and combines appropriate statistics for the D+1 model. Instead of the original space of the N-dimensional problem, the interference signal subspace is reduced to D+1. Typical antenna arrays in many modern communication networks absorb waves generated from multiple point sources. An analytical formula was derived to improve the signal to interference and noise ratio (SINR) obtained from the steering errors of the two beamformers. The proposed MVDR processor-based beamforming does not enforce general constraints. Therefore, it can also be used in systems where the steering vector is compromised by gain. Simulation results show that the output of the proposed beamformer based on the MVDR processor is usually close to the ideal state within a wide range of signal-to-noise ratio and signal-to-interference ratio. The MVDR processor-based beamformer has been experimentally evaluated. The proposed processor-based MVDR system significantly improves performance for large interference white noise ratio (INR) in the sidelobe region and provide an appropriate beam pattern

    Advances in Integrated Circuit Design and Implementation for New Generation of Wireless Transceivers

    Get PDF
    User’s everyday outgrowing demand for high-data and high performance mobile devices pushes industry and researchers into more sophisticated systems to fulfill those expectations. Besides new modulation techniques and new system designs, significant improvement is required in the transceiver building blocks to handle higher data rates with reasonable power efficiency. In this research the challenges and solution to improve the performance of wireless communication transceivers is addressed. The building block that determines the efficiency and battery life of the entire mobile handset is the power amplifier. Modulations with large peak to average power ratio severely degrade efficiency in the conventional fixed-biased power amplifiers (PAs). To address this challenge, a novel PA is proposed with an adaptive load for the PA to improve efficiency. A nonlinearity cancellation technique is also proposed to improve linearity of the PA to satisfy the EVM and ACLR specifications. Ultra wide-band (UWB) systems are attractive due to their ability for high data rate, and low power consumption. In spite of the limitation assigned by the FCC, the coexistence of UWB and NB systems are still an unsolved challenge. One of the systems that is majorly affected by the UWB signal, is the 802.11a system (5 GHz Wi-Fi). A new analog solution is proposed to minimize the interference level caused by the impulse Radio UWB transmitter to nearby narrowband receivers. An efficient 400 Mpulse/s IR-UWB transmitter is implemented that generates an analog UWB pulse with in-band notch that covers the majority of the UWB spectrum. The challenge in receiver (RX) design is the over increasing out of blockers in applications such as cognitive and software defined radios, which are required to tolerate stronger out-of-band (OB) blockers. A novel RX is proposed with a shunt N-path high-Q filter at the LNA input to attenuate OB-blockers. To further improve the linearity, a novel baseband blocker filtering techniques is proposed. A new TIA has been designed to maintain the good linearity performance for blockers at large frequency offsets. As a result, a +22 dBm IIP3 with 3.5 dB NF is achieved. Another challenge in the RX design is the tough NF and linearity requirements for high performance systems such as carrier aggregation. To improve the NF, an extra gain stage is added after the LNA. An N-path high-Q band-pass filter is employed at the LNA output together with baseband blocker filtering technique to attenuate out-of-band blockers and improve the linearity. A noise-cancellation technique based on the frequency translation has been employed to improve the NF. As a result, a 1.8dB NF with +5 dBm IIP3 is achieved. In addition, a new approach has been proposed to reject out of band blockers in carrier aggregation scenarios. The proposed solution also provides carrier to carrier isolation compared to typical solution for carrier aggregation

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    Ultrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden müssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen Fällen der naheliegende Ansatz, ein kohärenter Empfänger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohärenter Empfänger zum Einsatz. Inkohärente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgünstige und robuste Implementierungen möglich sind. Dies trifft vor allem in Anwendungsfällen wie den von drahtlosen Sensornetzen zu, wo preiswerte Geräte mit langer Batterielaufzeit nötigsind. Dies verringert den für die Kanalschätzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenüber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunächst ein inkohärenter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohärenter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hängt von dem Produkt aus der Länge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohärentes Combining zu reduzieren und somit die Leistungseffizienz des Empfängers zu steigern, werden verbesserte Combining-Methoden für Mehrwegeempfang vorgeschlagen. Ein analoger Empfänger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird für UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dünn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel für die Code-Auswahl vorgestellt, welche die Stabilität des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohärentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohärenter Demodulation. Im Vergleich zum Analogempfänger besitzt ein Digitalempfänger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohärent und beschränkt das inkohärente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewährleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohärenten Combining-Verlust, sonder zeigt auch eine stärkere Resistenz gegenüber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfällt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in Abhängigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur Unterdrückung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohärente Empfänger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohärentem Combining-Verlust und Stabilität gegenüber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept für UWB-Systeme erarbeitet: wahlweise kohärente oder inkohärente Empfänger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengünstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung für hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die Funktionalität des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). Zusätzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollständig ausnutzen, was sich in verbesserten Schätzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Continuous-time low-pass filters for integrated wideband radio receivers

    Get PDF
    This thesis concentrates on the design and implementation of analog baseband continuous-time low-pass filters for integrated wideband radio receivers. A total of five experimental analog baseband low-pass filter circuits were designed and implemented as a part of five single-chip radio receivers in this work. After the motivation for the research work presented in this thesis has been introduced, an overview of analog baseband filters in radio receivers is given first. In addition, a review of the three receiver architectures and the three wireless applications that are adopted in the experimental work of this thesis is presented. The relationship between the integrator non-idealities and integrator Q-factor, as well as the effect of the integrator Q-factor on the filter frequency response, are thoroughly studied on the basis of a literature review. The theoretical study that is provided is essential for the gm-C filter synthesis with non-ideal lossy integrators that is presented after the introduction of different techniques to realize integrator-based continuous-time low-pass filters. The filter design approach proposed for gm-C filters is original work and one of the main points in this thesis, in addition to the experimental IC implementations. Two evolution versions of fourth-order 10-MHz opamp-RC low-pass filters designed and implemented for two multicarrier WCDMA base-station receivers in a 0.25-µm SiGe BiCMOS technology are presented, along with the experimental results of both the low-pass filters and the corresponding radio receivers. The circuit techniques that were used in the three gm-C filter implementations of this work are described and a common-mode induced even-order distortion in a pseudo-differential filter is analyzed. Two evolution versions of fifth-order 240-MHz gm-C low-pass filters that were designed and implemented for two single-chip WiMedia UWB direct-conversion receivers in a standard 0.13-µm and 65-nm CMOS technology, respectively, are presented, along with the experimental results of both the low-pass filters and the second receiver version. The second UWB filter design was also embedded with an ADC into the baseband of a 60-GHz 65-nm CMOS radio receiver. In addition, a third-order 1-GHz gm-C low-pass filter was designed, rather as a test structure, for the same receiver. The experimental results of the receiver and the third gm-C filter implementation are presented

    Enabling Technologies for Distribution of Broadband Radio over Fiber

    Get PDF
    RÉSUMÉ La radio sur fibre (RoF) a été considérée comme une technologie prometteuse qui concurrencera de manière indisputable comme solution viable pour la distribution des systèmes de communication sans fil à bande large actuels et futurs. La technologie RoF emploie la modulation d'onde sous-porteuse (SCM) pour moduler la lumière par un signal RF, qui à son tour sera transmise par la fibre. Malheureusement, la transmission du signal RF sur la fibre est sujette à un certain nombre de défauts. Ces défauts incluent le faible rendement de la conversion optique en électrique, à la dispersion chromatique de la fibre, et à la non-linéarité de l’émetteur optique. L'objectif de cette thèse est de développer des technologies de pointe pour la radio sur fibre à large bande. Les conceptions proposées devraient adresser la déformation non linéaire induite par l'émetteur optique, combattre le problème de l’affaiblissement de la puissance optique induit par la dispersion chromatique de la fibre, et améliorer l'efficacité de modulation optique au petit signal sans augmenter de manière significative le cout et la complexité du système RoF. Pour le signal RF à large bande, nous considérons le signal à bande ultra large utilisant le multiplexage par répartition orthogonale de la fréquence (ULB MB-MROF), qui a été proposé comme solution pour le réseau de secteur personnel sans fil d’IEEE 802.15.3a (WPAN). D'abord, la performance de la transmission de l'ULB MB-MROF par la fibre est étudiée en considérant l'impact de modulation et démodulation optique. L'analyse théorique de l'effet de la dispersion de la fibre, de la réponse de l'émetteur optique et du récepteur optique sur la performance du système est effectuée en considérant la distorsion de la phase et de l'amplitude. Des expériences sont réalisées pour vérifier notre analyse théorique et une bonne concordance est obtenue. Il est constaté que l'index de modulation RF de ~4% est optimum pour l'émetteur optique avec le modulateur de Mach-Zehnder, et le récepteur optique avec la réponse de Tchebychev-II est le meilleur pour l'ULB MB-MROF sur fibre. Aussi, la performance de la transmission sans fil est limitée par la sensibilité du récepteur ULB MB-MROF. Il est aussi trouvé qu’une haute puissance optique reçue est exigée pour la transmission du signal de l'ULB MB-MROF sur fibre.----------ABSTRACT Radio over fiber (RoF) has been considered as a very promising technology that will indisputably compete as a viable solution for the distribution of current and future broadband wireless communication systems such as IEEE 802.15.3a WPAN using Multiband-Orthogonal Frequency Division Multiplexing Ultra-Wideband (MB-OFDM UWB) signal. The RoF technology makes use of subcarrier modulation (SCM) to modulate an RF signal on light, which in turn will be transmitted by optical fiber. Unfortunately, the transmission of RF signal over fiber is subject to a number of impairments. These impairments include: low optical to electrical conversion efficiency, fiber chromatic dispersion, and nonlinearity of the optical front end, etc.. The objective of this thesis is to develop enabling technologies for broadband RoF systems. The proposed design platforms and techniques should address nonlinear distortion induced by the optical transmitter; combat optical power fading issue induced by the chromatic dispersion; and improve modulation efficiency of the optical small-signal modulation without significantly adding excessive expense and complexity to the RoF system. First of all, the performance of MB-OFDM UWB wireless over fiber transmission system is investigated considering optical modulation and demodulation aspects. Theoretical analysis of the effects of fiber chromatic dispersion, relative intensity noise (RIN), optical transmitter and optical receiver response on system performance is carried out considering amplitude and phase distortion. Experiments are conducted, which have verified our theoretical analysis and a good agreement is obtained. It is found that low RF modulation index (4%) for optical transmitter with Mach-Zehnder modulator (MZM), and optical receiver with Chebyshev-II response is the best for MB-OFDM UWB over fiber. The wireless transmission performance is limited by the UWB receiver sensitivity. Moreover, a high received optical power is required for transmission of MB-OFDM UWB signal over fiber. It is also found that the parameters like laser output power, laser linewidth and fiber dispersion that control RIN, will critically affect the overall performance of a UWB over fiber system
    corecore