105 research outputs found

    Routage et gestion de la mobilité dans les réseaux personnels

    Get PDF
    L'objectif de cette thèse est d'étudier des méthodes et des stratégies efficaces pour le routage et la gestion de la mobilité dans le cadre des réseaux personnels. Dans un premier temps, nous proposons le cadre de nos études: Personal Ubiquitous Environments (PUE). Un PUE est constitué d'un ensemble d'utilisateurs ayant des terminaux disposant d'interfaces réseau hétérogènes, et dont l'objectif est de mettre en oeuvre des mécanismes de coopération et de partage des ressources de manière totalement distribuée. Dans ce cadre, la thèse a proposé des solutions innovantes contribuant à améliorer la communication inter et intra réseau personnels. La première contribution porte sur le protocole PNRP (Personal Network Routing Protocol) dont le but est de développer un routage à base de politiques (policy-based routing) pour les environnements personnels. La seconde, intitulée ADD (Adaptive Distributed gateway Discovery), est un mécanisme totalement distribué pour la découverte de multiples chemins vers une passerelle vers un réseau opéré. De plus, étant donné que ces environnements sont hétérogènes par leurs compositions (réseaux d'accès, terminaux ...), une architecture de gestion de la mobilité qui permet une gestion unifiée de la localisation et de la mobilité sans coutures appliquant lénsemble des noeuds a également été traitée. Les résultats d'évaluation par simulation démontrent l'applicabilité et léfficacité des ces protocoles.The aim of this thesis is to investigate methods and strategies for efficient routing and mobility management in personal environments. The concept of Personal Ubiquitous Environments (PUE) is introduced which accommodates heterogeneous devices and access networks of different users and sustain the notion of sharing resources in a distributed manner. A prerequisite for achieving the resource (devices, networks) sharing in personal environments is the deployment of suitable communication protocols which establish efficient multi-hop routes betweens the devices of the PUE. Personal Network Routing Protocol (PNRP) has been developed to perform policy-based routing in personal environments. Moreover, in certain personal networking scenarios, the infrastructure network components (i.e. gateways) are more than one-hop distance from the user's devices; Adaptive Distributed gateway Discovery (ADD) protocol is thereby proposed to efficiently discover the multi-hop routes towards the gateway in a totally distributed manner. All the more, since the personal environments regroups heterogeneous access networks, an efficient mobility management architecture is proposed which offers unified location management and seamless handover experience to dynamic personal nodes. The proposed protocols are assessed by means of numerous communication scenarios; the simulation results demonstrate the applicability of the proposed protocols

    A cross-layer mobility management framework for next-generation wireless roaming

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 62-64).This thesis proposes a mobility management framework that aims to provide a framework for advanced mobility algorithms that allows the challenges of next-generation roaming to be met. The framework features tools that gather context and content information, guarantee low-level QoS, provide security, and offer link and handoff management. The framework aims to be scalable and reliable for all-IP heterogeneous wireless networks whilst conforming to 4G service requirements

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    An Optimum Vertical Handoff Decision Algorithm for UMTS-WLAN

    Full text link
    The integration of diverse but complementary cellular and wireless technologies in the next generation of wireless communication systems requires the design of intelligent vertical handoff decision algorithms to enable mobile users to seamlessly switch network access and experience uninterrupted service continuity anywhere and anytime. This paper provides an adaptive multiple attribute vertical handoff decision algorithm that enables wireless access network selection at a mobile terminal using fuzzy logic concepts and a genetic algorithm. A performance study using the integration of wireless wide area networks (WWANs) and wireless metropolitan area networks (WMANs) as an example shows that our proposed vertical handoff decision algorithm is able to determine when a handoff is required, and selects the best access network that is optimized to network conditions, quality of service requirements, mobile terminal conditions, user preferences, and service cost

    Mobility management in B3G networks: a middleware-based approach

    Get PDF
    International audienceThe B3G (Beyond 3G) networking will enable mobile users to roam freely through heterogeneous networks on an all-IP platform. However, mobility handling in such an environment poses new challenges. Traditionally, mobility protocols such as Mobile IP, SIP and SCTP are used to manage mobility in B3G, but they require telecommunication companies to either modify existing network infrastructures or deploy central entities in the network core to handle mobility. This is not feasible in a fully distributed computing environment (e.g., P2P) and mobile ad hoc networks that are part of B3G networking. As an alternative, this paper introduces a middleware component with modularized functionalities to facilitate mobility management in a fully distributed B3G environment

    Survey Paper: Mobility Management in Heterogeneous Wireless Networks

    Get PDF
    AbstractEver increasing user demands and development of modern communication technologies have led to the evolution of communication networks from 1st Generation (1G) network to 4G heterogeneous networks. Further, 4G with heterogeneous network environment will provide features such as, “Always Best Connected”, “Anytime Anywhere” and seamless communication. Due to diverse characteristics of heterogeneous networks such as bandwidth, latency, cost, coverage and Quality of Service (QoS) etc., there are several open and unsolved issues namely mobility management, network administration, security etc. Hence, Designing proficient mobility management to seamlessly integrate heterogeneous wireless networks with all-IP is the most challenging issue in 4G networks. Mobile IPv6 (MIPv6) developed by Internet Engineering Task Force (IETF) has mobility management for the packet-switched devices of homogeneous wireless networks. Further, mobility management of homogeneous networks depends on network related parameter i.e., Received Signal Strength (RSS). However the mobility management of heterogeneous networks, not only depends on network related parameters, but also on terminal-velocity, battery power, location information, user-user profile & preferences and service-service capabilities & QoS etc. Designing mobility management with all-IP, while, considering issues such as context of networks, terminal, user and services is the main concern of industry and researchers in the current era

    Novel Model of Adaptive Module for Security and QoS Provisioning in Wireless Heterogeneous Networks

    Get PDF
    Considering the fact that Security and Quality-Of-Service (QoS) provisioning for multimedia traffic in Wireless Heterogeneous Networks are becoming increasingly important objectives, in this paper we are introducing a novel adaptive Security and QoS framework. This framework is planned to be implemented in integrated network architecture (UMTS, WiMAX and WLAN). The aim of our novel framework is presenting a new module that shall provide the best QoS provisioning and secure communication for a given service using one or more wireless technologies in a given time

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies
    corecore