4,501 research outputs found

    Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm

    Get PDF
    Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm

    An Improvement of Load Flow Solution for Power System Networks using Evolutionary-Swarm Intelligence Optimizers

    Get PDF
    Load flow report which reveals the existing state of the power system network under steady operating conditions, subject to certain constraints is being bedeviled by issues of accuracy and convergence. In this research, five AI-based load flow solutions classified under evolutionary-swarm intelligence optimizers are deployed for power flow studies in the 330kV, 34-bus, 38-branch section of the Nigerian transmission grid. The evolutionary-swarm optimizers used in this research consist of one evolutionary algorithm and four swarm intelligence algorithms namely; biogeography-based optimization (BBO), particle swarm optimization (PSO), spider monkey optimization (SMO), artificial bee colony optimization (ABCO) and ant colony optimization (ACO). BBO as a sole evolutionary algorithm is being configured alongside four swarm intelligence optimizers for an optimal power flow solution with the aim of performance evaluation through physical and statistical means. Assessment report upon application of these standalone algorithms on the 330kV Nigerian grid under two (accuracy and convergence) metrics produced PSO and ACO as the best-performed algorithms. Three test cases (scenarios) were adopted based on the number of iterations (100, 500, and 1000) for proper assessment of the algorithms and the results produced were validated using mean average percentage error (MAPE) with values of voltage profile created by each solution algorithm in line with the IEEE voltage regulatory standards. All algorithms proved to be good load flow solvers with distinct levels of precision and speed. While PSO and SMO produced the best and worst results for accuracy with MAPE values of 3.11% and 36.62%, ACO and PSO produced the best and worst results for convergence (computational speed) after 65 and 530 average number of iterations. Since accuracy supersedes speed from scientific considerations, PSO is the overall winner and should be cascaded with ACO for an automated hybrid swarm intelligence load flow model in future studies. Future research should consider hybridizing ACO and PSO for a more computationally efficient solution model

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Connectionist techniques to approach sustainability modelling

    Get PDF
    When defining a context of sustainability, capturing the complexity of data and extracting as much information as possible are fundamental challenges. Normally, quantitative and qualitative indicators are defined. While the definition and calculation of the former is direct, the latter are difficult to manage. This document provides tools based on connectionist techniques for managing complex information combining the use of imprecise and qualitative variables. The application of these tools to evaluate non-numerical sustainability indicators is presented. The results obtained in some first approaches are briefly presented to illustrate the connectionist paradigm
    corecore