166 research outputs found

    Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet

    Get PDF
    In 1971, an international symposium, Sorghum in the Seventies , organized by the All India Coordinated Sorghum Improvement Project with support from the Indian Council of Agricultural Research and the Rockefeller Foundation was held in Hyderabad, India. The symposium reviewed the current knowledge base of the scientific, production and nutritional aspects of sorghum as a crop and as a human food. In 1981, ICRISAT, INTSORMIL, and the Indian Council of Agricultural Research (ICAR) sponsored Sorghum in the Eighties , an international symposium at ICRISAT Center in India, to review the achievements accomplished in sorghum research during the preceding 10 years. They reviewed sorghum\u27s role as an important cereal food, feed, construction material, and fuel in the developed and developing countries. In 1994, after discussion among INTSORMIL and ICRISAT scientists, it was recognized that an international meeting on the genetic improvement of grain sorghum and pearl millet was needed and would be strongly supported by the international sorghum and millet research community. Those discussions led to the September 1996 International Conference on Genetic Improvement of Sorghum and Pearl Millet. Grain sorghum and pearl millet are major food grains in the semiarid tropics of Africa, India, and South America. Sorghum ranks fifth among the world\u27s cereals, following wheat, maize, rice, and barley. F AO includes all millets together in its production estimates. Current estimates indicate that annual world sorghum production is approximately 61 million metric tons and world millet production is approximately 20 million metric tons. The inaugural speaker of this 1996 conference, Dr. Leland House, indicated global population is projected to increase to nine billion people by the year 2030 and is projected to increase most rapidly in the developing world. This will create a growing demand for food, as well as potential new market opportunities for food products developed from these basic grains

    Water rights and related water supply issues

    Get PDF
    Presented during the USCID water management conference held on October 13-16, 2004 in Salt Lake City, Utah. The theme of the conference was "Water rights and related water supply issues."Includes bibliographical references.Proceedings sponsored by the U.S. Department of the Interior, Central Utah Project Completion Act Office and the U.S. Committee on Irrigation and Drainage.Consensus building as a primary tool to resolve water supply conflicts -- Administration to Colorado River allocations: the Law of the River and the Colorado River Water Delivery Agreement of 2003 -- Irrigation management in Afghanistan: the tradition of Mirabs -- Institutional reforms in irrigation sector of Pakistan: an approach towards integrated water resource management -- On-line and real-time water right allocation in Utah's Sevier River basin -- Improving equity of water distribution: the challenge for farmer organizations in Sindh, Pakistan -- Impacts from transboundary water rights violations in South Asia -- Impacts of water conservation and Endangered Species Act on large water project planning, Utah Lake Drainage Basin Water Delivery System, Bonneville Unit of the Central Utah Project -- Economic importance and environmental challenges of the Awash River basin to Ethiopia -- Accomplishing the impossible: overcoming obstacles of a combined irrigation project -- Estimating actual evapotranspiration without land use classification -- Improving water management in irrigated agricultue -- Beneficial uses of treated drainage water -- Comparative assessment of risk mitigation options for irrigated agricutlrue -- A multi-variable approach for the command of Canal de Provence Aix Nord Water Supply Subsystem -- Hierarchical Bayesian Analysis and Statistical Learning Theory II: water management application -- Soil moisture data collection and water supply forecasting -- Development and implementation of a farm water conservation program within the Coachella Valley Water District, California -- Concepts of ground water recharge and well augmentation in northeastern Colorado -- Water banking in Colorado: an experiment in trouble? -- Estimating conservable water in the Klamath Irrigation Project -- Socio-economic impacts of land retirement in Westlands Water District -- EPDM rubber lining system chosen to save valuable irrigation water -- A user-centered approach to develop decision support systems for estimating pumping and augmentation needs in Colorado's South Platte basin -- Utah's Tri-County Automation Project -- Using HEC-RAS to model canal systems -- Potential water and energy conservation and improved flexibility for water users in the Oasis area of the Coachella Valley Water District, California

    XX Convegno nazionale dell'Associazione italiana di Agrometeorologia (AIAM). XLVI Convegno nazionale della SocietĂ  italiana di Agronomia (SIA). Strategie integrate per affrontare le sfide climatiche e agronomiche nella gestione dei sistemi agroalimentari. Integrated strategies for agro-ecosystem management to address climate change challenges.

    Get PDF
    Atti del convegno nazionale di due delle principali societĂ  scientifiche che si occupano di scienze agrarie (SocietĂ  Italiana di Agronomia e Associazione Italiana di AgroMeteorologia), quest'anno effettuato congiuntamente. Nel convegno si Ă  trattato dei problemi e delle nuove strategie integrate per affrontare le sfide climatiche e agronomiche nella gestione dei sistemi agroalimentari

    Efficacy of Recovery Sprays to Synthetic Auxin Injured Cotton and Comparison of Multiple and Single Pass Harvest Systems Effect on Cotton Yield and Fiber Quality

    Get PDF
    The latest major technology advancement for cotton producers (Gossypium sp.) is arguably auxin-resistant cultivars, but this technology has created issues with auxin injury from off-site movement, requiring the use of coarse nozzles for herbicide application. To address these issues, studies were conducted to address defoliation with coarse nozzle tips and the ability to promote recovery of cotton plants from auxin injury. The study of nozzle types and carrier volumes revealed higher carrier volumes are more successful at defoliating and opening bolls than lower carrier volumes. Water volumes of 47 L ha-1 should be avoided when making cotton harvest aid applications, as all defoliation, open boll, and regrowth values were consistently reduced at the lowest carrier volume. Various nozzle types had less impact on harvest aid efficacy than carrier volume. In 2017, three recovery products (mepiquat chloride, N-Demand + Advantigro, and Radiate) used on dicamba-injured cotton resulted in similar yields to untreated cotton. These findings were not present for 2018 or 2019, as none of the recovery treatments produced yields comparable to the untreated check. For all three years of the 2,4-D trial, all the recovery treatments were comparable in yield and none of treatments improved yields, although in 2017, the auxin-only treatment resulted in similar lint yields to the untreated check. Another major concern for cotton producers is seed cotton removal from fields due to weather delays. A study was conducted to measure the benefits of early removal of seed cotton through a multiple picking process compared to the traditional single-pass harvest method. Over the seven site-years, for both picker- and stripper-harvested varieties, similar trends were observed for both yield, fiber quality, and gross revenue. These results indicated that multiple harvests provided comparable value for short-season and mid-late season cotton varieties. For lint yields, this research indicated there is more benefit to timely harvest for cotton grown in high-yielding and picker-harvested environments than non-irrigated, low-yielding, and stripper-harvested cotton. Furthermore, multiple harvesting provides a significant value and provides an economic justification for robotic harvesting to be developed for the cotton industry

    The desertification context

    Get PDF
    Desertification is a critical issue for Mediterranean drylands. Climate change is expected to aggravate its extension and severity by reinforcing the biophysical driving forces behind desertification processes: hydrology, vegetation cover and soil erosion. The main objective of this thesis is to assess the vulnerability of Mediterranean watersheds to climate change, by estimating impacts on desertification drivers and the watersheds’ resilience to them. To achieve this objective, a modeling framework capable of analyzing the processes linking climate and the main drivers is developed. The framework couples different models adapted to different spatial and temporal scales. A new model for the event scale is developed, the MEFIDIS model, with a focus on the particular processes governing Mediterranean watersheds. Model results are compared with desertification thresholds to estimate resilience. This methodology is applied to two contrasting study areas: the Guadiana and the Tejo, which currently present a semi-arid and humid climate. The main conclusions taken from this work can be summarized as follows: • hydrological processes show a high sensitivity to climate change, leading to a significant decrease in runoff and an increase in temporal variability; • vegetation processes appear to be less sensitive, with negative impacts for agricultural species and forests, and positive impacts for Mediterranean species; • changes to soil erosion processes appear to depend on the balance between changes to surface runoff and vegetation cover, itself governed by relationship between changes to temperature and rainfall; • as the magnitude of changes to climate increases, desertification thresholds are surpassed in a sequential way, starting with the watersheds’ ability to sustain current water demands and followed by the vegetation support capacity; • the most important thresholds appear to be a temperature increase of +3.5 to +4.5 ºC and a rainfall decrease of -10 to -20 %; • rainfall changes beyond this threshold could lead to severe water stress occurring even if current water uses are moderated, with droughts occurring in 1 out of 4 years; • temperature changes beyond this threshold could lead to a decrease in agricultural yield accompanied by an increase in soil erosion for croplands; • combined changes of temperature and rainfall beyond the thresholds could shift both systems towards a more arid state, leading to severe water stresses and significant changes to the support capacity for current agriculture and natural vegetation in both study areas.Supported by the Portuguese Foundation for Science and Technology and the European Union under Operational Program “Science and Innovation” (POCI 2010), Ph.D. grant ref. SFRH/BD/5059/200

    PHYSIOLOGICAL AND MOLECULAR ANALYSIS OF DROUGHT RESPONSE IN SWEET SORGHUM

    Get PDF
    Il sorgo zuccherino utilizzato per produrre cibo, mangimi e carburante con limitato impiego di risorse, risponde ai criteri dell’agricoltura moderna ed è impiegato nella produzione di bioenergia. È una pianta C4 adattata agli ambienti semi-aridi, caratteristica che dovrebbe essere mantenuta e migliorata nel processo di ottenimento di nuovi genotipi. Per comprendere le basi genetiche e fisiologiche della tolleranza alla siccità, genotipi di sorgo (IS 19453, Mpwekwa, SDS19483, IS33350, BR505, BR501) sono stati valutati in camera di crescita e in serra. Lo stress idrico è iniziato quando le piante avevano consumato l'80% di acqua disponibile. L’RNA totale è stato estratto da piante irrigate e non a diversi livelli di stress idrico. L'analisi di espressione genica è stata eseguita attraverso l’uso delle tecniche microarray e q-RT PCR. Il numero dei geni differenzialmente espressi aumentava all’aumentare del livello di stress. Gran parte dei geni sovra espressi erano coinvolti nei meccanismi di difesa, di trasporto, di regolazione genica, e nel metabolismo lipidico, proteico e degli zuccheri. Nelle piante non irrigate, al più alto livello di stress, i geni sovra-regolati presentavano livelli di espressione di 2-5 volte superiori rispetto ai campioni di controllo. Questi risultati serviranno all’identificazione di ”single nucleotide polymorphisms” nelle sequenze dei geni candidati e al loro impiego come marcatori nel processo di miglioramento genetico assistito.Sweet sorghum providing food, feed and fuel with a limited use of resources, responds to the criteria of sustainable bioenergy production. Sorghum is a C4 plant adapted to semi-arid environments, characteristic that should be maintained and further improved in the process of breding new genotypes for bioenergy production. To understand the genetic and physiological basis of drought tolerance, sorghum genotypes (IS 19453, Mpwekwa, SDS19483, IS33350, BR505, BR501) were evaluated in growth chamber and greenhouse experiments. Drought stress started when plants had consumed 80% of transpirable soil water. Total RNA was extracted from irrigated and not irrigated plants at different levels of water stress, and gene expression analysis was carried out using microarray and q-RT PCR techniques. The number of differentially expressed genes increased with the stress level. Most of the up regulated genes were involved in cell rescue, transport, nucleic acid binding, and in lipid, protein and sugar metabolism. In non-irrigated plants, at the higher stress level, up-regulated genes presented levels of expression 2-5 fold higher compared to control samples. These preliminary results will be useful for the identification of single nucleotide polymorphisms in candidate genes sequences in order to use them as markers for assisted breeding

    Renewing Local Planning to Face Climate Change in the Tropics

    Get PDF
    climate vulnerability; urban resilience; climate change; adaptation; planning; environmental risk analysis; decision making; disaster risk reduction; tropical climate managemen

    Renewing Local Planning to Face Climate Change in the Tropics

    Get PDF
    This book aims to inspire decision makers and practitioners to change their approach to climate planning in the tropics through the application of modern technologies for characterizing local climate and tracking vulnerability and risk, and using decision-making tools. Drawing on 16 case studies conducted mainly in the Caribbean, Central America, Western and Eastern Africa, and South East Asia it is shown how successful integration of traditional and modern knowledge can enhance disaster risk reduction and adaptation to climate change in the tropics. The case studies encompass both rural and urban settings and cover different scales: rural communities, cities, and regions. In addition, the book looks to the future of planning by addressing topics of major importance, including residual risk integration in local development plans, damage insurance and the potential role of climate vulnerability reduction credits. In many regions of the tropics, climate planning is growing but has still very low quality. This book identifies the weaknesses and proposes effective solutions

    On Integrating Theories of International Economics in the Strategic Planning of Global Supply Chains and Dynamic Supply Chain Reconfiguration with Capacity Expansion and Contraction

    Get PDF
    This dissertation discusses two independent topics. The first part of the dissertation relates three theories of international economics (comparative advantage, competitive advantage, and competitiveness), and formulates the thesis that incorporating them in the form of readily available individual competitiveness indicators in OR/MS models offers promise to enhance decision-support for the strategic planning of global supply chains in general, and for locating facilities in particular. The objectives of this research were to relate each of these theories and to describe their interrelationships; to describe measures provided by two well-known annual competitiveness reports; and to illustrate application of the theories as a means of supporting the thesis of the research, and justifying the research questions we pose for future research. While this research discusses topics relative to the broader background of global supply chain design, it illustrates applications associated with facility location, a component of the global supply chain design. In the last chapter of the first part of the dissertation, we provide a vision to foster future research that will enhance the profitability of international enterprises under NAFTA. The second part of the dissertation deals with the DSCR model with capacity expansion and contraction. The strategic dynamic supply chain reconfiguration (DSCR) problem is to prescribe the location and capacity of each facility, select links used for transportation, and plan material flows through the supply chain, including production, inventory, backorder, and outsourcing levels. The objective is to minimize total cost. The configuration must be dynamically redesigned over time to accommodate changing trends in demand and/or costs by opening facilities, expanding and/or contracting their capacities, and closing facilities. The problem involves a multi-period, multi-product, multi-echelon supply chain. Research objectives are alternative formulations of DSCR and tests that identify the computational characteristics of each model to determine if one offers superior solvability in comparison with the others. To achieve the first objective, we present an initial MIP model, a refined model that relates decision variables according to a convenient structure, and branch and price (B&P) schemes for the refined model. We found that the network-based formulation offered superior solvability compared to the traditional formulation

    Tracking Adaptation Pathways and Identifying Strategies for Enhancing Grass-root Resilience to Climate Change Synthesis of Case Studies from Selected Countries of Asia (Bangladesh, China, India, Sri Lanka, Thailand and Viet Nam)

    Get PDF
    The recent 4th Assessment of the International Panel on Climate Change (IPCC) provides the latest revelations on the science, impacts, and potential measures to address climate change. Nevertheless, the state of knowledge that is available at the global level is far from comprehensive. Whereas there has been high focus on continental understanding, the same cannot be said at regional and sub-regional levels (INCAA 2010). The early action plans in response to growing awareness on the challenges of climate change, the governments worldwide, including those from developing countries, have strengthened confidence, capacity, knowledge, and experience to focus on agricultural production systems that are resilient to climate risks. Motivated by growing interests and building on available knowledge, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) together with six countries in Asia undertook the challenge to “know in order to act” and implemented the project entitled “Vulnerability to Climate Change: Adaptation Strategies and Layers of Resilience “. Funded by the Asian Development Bank (ADB), this study is a comprehensive effort to analyze the vulnerability and adaptation strategies by farmers in the marginal regions of Asia in the context of a changing climate or increasing climate associated variability and risk. We hope the results will provide a basis for further suggestions on strategies and policies to reduce risk and vulnerability, build and strengthen adaptive capacity, to provide options for farmers to be able to cope better with the future climate change...
    • …
    corecore