3,273 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Quantitative dependability and interdependency models for large-scale cyber-physical systems

    Get PDF
    Cyber-physical systems link cyber infrastructure with physical processes through an integrated network of physical components, sensors, actuators, and computers that are interconnected by communication links. Modern critical infrastructures such as smart grids, intelligent water distribution networks, and intelligent transportation systems are prominent examples of cyber-physical systems. Developed countries are entirely reliant on these critical infrastructures, hence the need for rigorous assessment of the trustworthiness of these systems. The objective of this research is quantitative modeling of dependability attributes -- including reliability and survivability -- of cyber-physical systems, with domain-specific case studies on smart grids and intelligent water distribution networks. To this end, we make the following research contributions: i) quantifying, in terms of loss of reliability and survivability, the effect of introducing computing and communication technologies; and ii) identifying and quantifying interdependencies in cyber-physical systems and investigating their effect on fault propagation paths and degradation of dependability attributes. Our proposed approach relies on observation of system behavior in response to disruptive events. We utilize a Markovian technique to formalize a unified reliability model. For survivability evaluation, we capture temporal changes to a service index chosen to represent the extent of functionality retained. In modeling of interdependency, we apply correlation and causation analyses to identify links and use graph-theoretical metrics for quantifying them. The metrics and models we propose can be instrumental in guiding investments in fortification of and failure mitigation for critical infrastructures. To verify the success of our proposed approach in meeting these goals, we introduce a failure prediction tool capable of identifying system components that are prone to failure as a result of a specific disruptive event. Our prediction tool can enable timely preventative actions and mitigate the consequences of accidental failures and malicious attacks --Abstract, page iii

    Modelling Security of Critical Infrastructures: A Survivability Assessment

    Get PDF
    Critical infrastructures, usually designed to handle disruptions caused by human errors or random acts of nature, define assets whose normal operation must be guaranteed to maintain its essential services for human daily living. Malicious intended attacks to these targets need to be considered during system design. To face these situations, defence plans must be developed in advance. In this paper, we present a Unified Modelling Language profile, named SecAM, that enables the modelling and security specification for critical infrastructures during the early phases (requirements, design) of system development life cycle. SecAM enables security assessment, through survivability analysis, of different security solutions before system deployment. As a case study, we evaluate the survivability of the Saudi Arabia crude-oil network under two different attack scenarios. The stochastic analysis, carried out with Generalized Stochastic Petri nets, quantitatively estimates the minimization of attack damages on the crude-oil network

    Development of a Security Methodology for Cooperative Information Systems: The CooPSIS Project

    Get PDF
    Since networks and computing systems are vital components of today\u27s life, it is of utmost importance to endow them with the capability to survive physical and logical faults, as well as malicious or deliberate attacks. When the information system is obtained by federating pre-existing local systems, a methodology is needed to integrate security policies and mechanisms under a uniform structure. Therefore, in building distributed information systems, a methodology for analysis, design and implementation of security requirements of data and processes is essential for obtaining mutual trust between cooperating organizations. Moreover, when the information system is built as a cooperative set of e-services, security is related to the type of data, to the sensitivity context of the cooperative processes and to the security characteristics of the communication paradigms. The CoopSIS (Cooperative Secure Information Systems) project aims to develop methods and tools for the analysis, design, implementation and evaluation of secure and survivable distributed information systems of cooperative type, in particular with experimentation in the Public Administration Domain. This paper presents the basic issues of a methodology being conceived to build a trusted cooperative environment, where data sensitivity parameters and security requirements of processes are taken into account. The milestones phases of the security development methodology in the context of this project are illustrated

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    Cyber situational awareness: from geographical alerts to high-level management

    Get PDF
    This paper focuses on cyber situational awareness and describes a visual analytics solution for monitoring and putting in tight relation data from network level with the organization business. The goal of the proposed solution is to make different security profiles (network security officer, network security manager, and financial security manager) aware of the actual network state (e.g., risk and attack progress) and the impact it actually has on the business tasks, making clear the relationships that exist between the network level and the business level. The proposed solution is instantiated on the ACEA infrastructure, the Italian company that provides power and water purification services to cities in central Italy (millions of end users
    • …
    corecore