942,025 research outputs found

    Behavioral models of digital IC ports from measured transient waveforms

    Get PDF
    This paper addresses the behavioral modeling of output ports of digital integrated circuits via the identification of nonlinear parametric models. The aim of the approach is to produce models for signal integrity (SI) simulation directly from the measured transient responses of the devices. The modeling process is thoroughly described and an experimental demonstration of its feasibility is give

    Finite element thermal-structural modeling of orbiting truss structures

    Get PDF
    A description of an integrated finite element (FE) thermal-structural approach for accurate and efficient modeling of large space structures is presented. A geometric model with a common discretization for all analyses is employed. It uses improved thermal elements and the results from the thermal analysis directly in the structural analysis without any intervening data processing. The differences between the conventional FE approach as implemented in large programs and an integrated FE approach currently under development are described. Considerations for thermal modeling of truss members is discussed and three thermal truss finite elements are presented. The performance of these elements was evaluated for typical truss members neglecting joint effects. A simple truss with metallic joints and composite members was studied to evaluate the effectiveness of the approach for realistic truss designs. A study of the effects of aluminum joints on the thermal deformations of a simple, plane truss with composite members showed that joint effects may be significant. Further study is needed to assess the role of joint effects on the deformation of large trusses

    An Integrated Approach to Energy Harvester Modeling and Performance Optimization

    No full text
    This paper proposes an integrated approach to energy harvester (EH) modeling and performance optimization where the complete mixed physical-domain EH (micro generator, voltage booster, storage element and load) can be modeled and optimized. We show that electrical equivalent models of the micro generator are inadequate for accurate prediction of the voltage booster’s performance. Through the use of hardware description language (HDL) we demonstrate that modeling the micro generator with analytical equations in the mechanical and magnetic domains provide an accurate model which has been validated in practice. Another key feature of the integrated approach is that it facilitates the incorporation of performance enhanced optimization, which as will be demonstrated is necessary due to the mechanicalelectrical interactions of an EH. A case study of a state-of-the-art vibration-based electromagnetic EH has been presented. We show that performance optimization can increase the energy harvesting rate by about 40%

    New Methods for Integrated Models of Animal Disease Control

    Get PDF
    Accurate assessments of the epidemiological and economic impacts of an animal disease require the incorporation of feedbacks between disease spread and production incentives. This paper motivates a new modeling framework that is sensitive to the dynamics of disease, production decisions and incentives, different livestock production systems, and their interaction through the use of an integrated system dynamics framework. Preliminary simulation results are provided to demonstrate proof-of-concept of such an approach, with additional discussion given on extensions and implications of integrated methods.Animal disease control, simulation modeling, system dynamics, Livestock Production/Industries,

    An architecture-based dependability modeling framework using AADL

    Full text link
    For efficiency reasons, the software system designers' will is to use an integrated set of methods and tools to describe specifications and designs, and also to perform analyses such as dependability, schedulability and performance. AADL (Architecture Analysis and Design Language) has proved to be efficient for software architecture modeling. In addition, AADL was designed to accommodate several types of analyses. This paper presents an iterative dependency-driven approach for dependability modeling using AADL. It is illustrated on a small example. This approach is part of a complete framework that allows the generation of dependability analysis and evaluation models from AADL models to support the analysis of software and system architectures, in critical application domains

    Integrated Modeling and Verification of Real-Time Systems through Multiple Paradigms

    Get PDF
    Complex systems typically have many different parts and facets, with different characteristics. In a multi-paradigm approach to modeling, formalisms with different natures are used in combination to describe complementary parts and aspects of the system. This can have a beneficial impact on the modeling activity, as different paradigms an be better suited to describe different aspects of the system. While each paradigm provides a different view on the many facets of the system, it is of paramount importance that a coherent comprehensive model emerges from the combination of the various partial descriptions. In this paper we present a technique to model different aspects of the same system with different formalisms, while keeping the various models tightly integrated with one another. In addition, our approach leverages the flexibility provided by a bounded satisfiability checker to encode the verification problem of the integrated model in the propositional satisfiability (SAT) problem; this allows users to carry out formal verification activities both on the whole model and on parts thereof. The effectiveness of the approach is illustrated through the example of a monitoring system.Comment: 27 page

    Validation by Measurements of a IC Modeling Approach for SiP Applications

    Get PDF
    The growing importance of signal integrity (SI) analysis in integrated circuits (ICs), revealed by modern systemin-package methods, is demanding for new models for the IC sub-systems which are both accurate, efficient and extractable by simple measurement procedures. This paper presents the contribution for the establishment of an integrated IC modeling approach whose performance is assessed by direct comparison with the signals measured in laboratory of two distinct memory IC devices. Based on the identification of the main blocks of a typical IC device, the modeling approach consists of a network of system-level sub-models, some of which with already demonstrated accuracy, which simulated the IC interfacing behavior. Emphasis is given to the procedures that were developed to validate by means of laboratory measurements (and not by comparison with circuit-level simulations) the model performance, which is a novel and important aspect that should be considered in the design of IC models that are useful for SI analysi

    Decomposing Integrated Assessment Climate Change

    Get PDF
    We present a decomposition approach for integrated assessment modeling of climate policy based on a linear approximation of the climate system. Our objective is to demonstrate the usefulness of decomposition for integrated assessment models posed in a complementarity format. First, the complementarity formulation cum decomposition permits a precise representation of post-terminal damages thereby substantially reducing the model horizon required to produce an accurate approximation of the infinite-horizon equilibrium. Second, and central to the economic assessment of climate policies, the complementarity approach provides a means of incorporating second-best effects that are not easily represented in an optimization model. --integrated assessment,decomposition,terminal constraints,optimal taxation

    Business Process Innovation using the Process Innovation Laboratory

    Get PDF
    Most organizations today are required not only to establish effective business processes but they are required to accommodate for changing business conditions at an increasing rate. Many business processes extend beyond the boundary of the enterprise into the supply chain and the information infrastructure therefore is critical. Today nearly every business relies on their Enterprise System (ES) for process integration and the future generations of enterprise systems will increasingly be driven by business process models. Consequently process modeling and improvement will become vital for business process innovation (BPI) in future organizations. There is a significant body of knowledge on various aspect of process innovation, e.g. on conceptual modeling, business processes, supply chains and enterprise systems. Still an overall comprehensive and consistent theoretical framework with guidelines for practical applications has not been identified. The aim of this paper is to establish a conceptual framework for business process innovation in the supply chain based on advanced enterprise systems. The main approach to business process innovation in this context is to create a new methodology for exploring process models and patterns of applications. The paper thus presents a new concept for business process innovation called the process innovation laboratory a.k.a. the Ð-Lab. The Ð-Lab is a comprehensive framework for BPI using advanced enterprise systems. The Ð-Lab is a collaborative workspace for experimenting with process models and an explorative approach to study integrated modeling in a controlled environment. The Ð-Lab facilitates innovation by using an integrated action learning approach to process modeling including contemporary technological, organizational and business perspectivesNo; keywords

    Integration of DFDs into a UML - based model-driven engineering approach

    Get PDF
    The main aim of this article is to discuss how the functional and the object-oriented views can be inter-played to represent the various modeling perspectives of embedded systems.We discuss whether the object-oriented modeling paradigm, the predominant one to develop software at the present time, is also adequate for modeling embedded software and how it can be used with the functional paradigm.More specifically, we present how the main modeling tool of the traditional structured methods, data flow diagrams, can be integrated in an object-oriented development strategy based on the unified modeling language. The rationale behind the approach is that both views are important for modeling purposes in embedded systems environments, and thus a combined and integrated model is not only useful, but also fundamental for developing complex systems. The approach was integrated in amodel-driven engineering process, where tool support for the models used was provided. In addition, model transformations have been specified and implemented to automate the process.We exemplify the approach with an IPv6 router case study.FEDER -Fundação para a CiĂȘncia e a Tecnologia(HH-02-383
    • 

    corecore