3,601 research outputs found

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    The State of Adaptation in the United States: An Overview

    Get PDF
    Over the past two decades the adaptation landscape has changed dramatically. From its early days as a vague theoretical concept, which was often viewed as a threat to advocating for the reduction of greenhouse gas emissions, it has developed into a widely, albeit not universally, recognized governmental mandate to reduce societal vulnerability to climate change. While it is important to appreciate the progress that we are making on this issue, it is impossible to ignore the urgent need to do more. Smart investment can be made by reflecting on what is already underway in order to determine where to build on existing efforts and where to innovate new approaches to fill the gaps in the path forward. In this report we provide illustrative examples of the variety of work on climate change adaptation that is underway in the United States. This is by no means an exhaustive survey of the field; however it does provide insight into the dominant focus of work to date, the resultant gaps, and the opportunities available for advancing this essential aspect of sustainability. We focus on four areas of activity -- agriculture, natural resources, human communities, and policy. The general trends relevant to these sectors can be applied more broadly to other sectors and countries. Adaptation can be thought of as a cycle of activities that ultimately -- if successful -- reduces vulnerability to climate change. This process starts with identifying the impacts of climate change to determine the types of problems climate change might pose. This includes all of the research on the causes and the global, regional, and local manifestations of climate change, often referred to as impacts assessments

    Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska

    Get PDF
    WA-RD 772.

    Challenges and lessons learned from integrated landscape management projects

    Get PDF
    There are growing concerns about local and regional ecosystems and their vulnerability in relation to human activities. This case study evaluates 10 Integrated Land Management (ILM) projects from Canada, the U.S. and Europe to provide information that will help promote better awareness of potential environmental and cumulative impacts due to development priorities and choices. ILM builds on a spectrum of approaches including integrated resource management, integrated watershed management, comprehensive regional land use planning and ecosystem-based management. The study found that ILM..

    Spatio-temporal correlation of extreme climate indices and river flood discharges

    Get PDF
    The occurrence of floods is strongly related to specific climatic conditions that favor extreme precipitation events. Although the impact of precipitation and temperature patterns on river flows is a well discussed topic in hydrology, few studies have focused on the rainfall and temperature extremes in their relation with peak discharges. This work presents a comparative analysis of Climate Change Indices (ETCCDI) annual time series, calculated using the NorthWestern Italy Optimal Interpolation (NWIOI) dataset, and annual maximum flows in the Piedmont Region. The Spearman’s rank correlation was used to determine which indices are temporally correlated with peak discharges, allowing to hypothesize the main physical processes involved in the production of floods. The correlation hypothesis was verified with the Spearman’s rank correlation test, considering a Student’s t-distribution with a 5% significance level. Moreover, the influence of climate variability on the tendency of annual maximum discharges was examined by correlating trends of climate indices with trends of the discharge series. These were calculated using the Theil-Sen slope estimator and tested with the Mann-Kendall test at the 5% significance level. The results highlight that while extreme precipitation indices are highly correlated with extreme discharges at the annual timescale, the interannual changes of extreme discharges may be better explained by the interannual changes of the total annual precipitation. This suggests that projections of the annual precipitation may be used as covariates for non-stationary flood frequency analysis

    Valuing adaptation under rapid change

    Get PDF
    AbstractThe methods used to plan adaptation to climate change have been heavily influenced by scientific narratives of gradual change and economic narratives of marginal adjustments to that change. An investigation of the theoretical aspects of how the climate changes suggests that scientific narratives of climate change are socially constructed, biasing scientific narratives to descriptions of gradual as opposed rapid, non-linear change. Evidence of widespread step changes in recent climate records and in model projections of future climate is being overlooked because of this. Step-wise climate change has the potential to produce rapid increases in extreme events that can cross institutional, geographical and sectoral domains.Likewise, orthodox economics is not well suited to the deep uncertainty faced under climate change, requiring a multi-faceted approach to adaptation. The presence of tangible and intangible values range across five adaptation clusters: goods; services; capital assets and infrastructure; social assets and infrastructure; and natural assets and infrastructure. Standard economic methods have difficulty in giving adequate weight to the different types of values across these clusters. They also do not account well for the inter-connectedness of impacts and subsequent responses between agents in the economy. As a result, many highly-valued aspects of human and environmental capital are being overlooked.Recent extreme events are already pressuring areas of public policy, and national strategies for emergency response and disaster risk reduction are being developed as a consequence. However, the potential for an escalation of total damage costs due to rapid change requires a coordinated approach at the institutional level, involving all levels of government, the private sector and civil society.One of the largest risks of maladaptation is the potential for un-owned risks, as risks propagate across domains and responsibility for their management is poorly allocated between public and private interests, and between the roles of the individual and civil society. Economic strategies developed by the disaster community for disaster response and risk reduction provide a base to work from, but many gaps remain.We have developed a framework for valuing adaptation that has the following aspects: the valuation of impacts thus estimating values at risk, the evaluation of different adaptation options and strategies based on cost, and the valuation of benefits expressed as a combination of the benefits of avoided damages and a range of institutional values such as equity, justice, sustainability and profit.The choice of economic methods and tools used to assess adaptation depends largely on the ability to constrain uncertainty around problems (predictive uncertainty) and solutions (outcome uncertainty). Orthodox methods can be used where both are constrained, portfolio methodologies where problems are constrained and robust methodologies where solutions are constrained. Where both are unconstrained, process-based methods utilising innovation methods and adaptive management are most suitable. All methods should involve stakeholders where possible.Innovative processes methods that enable transformation will be required in some circumstances, to allow institutions, sectors and communities to prepare for anticipated major change.Please cite this report as: Jones, RN, Young, CK, Handmer, J, Keating, A, Mekala, GD, Sheehan, P 2013 Valuing adaptation under rapid change, National Climate Change Adaptation Research Facility, Gold Coast, pp. 192.The methods used to plan adaptation to climate change have been heavily influenced by scientific narratives of gradual change and economic narratives of marginal adjustments to that change. An investigation of the theoretical aspects of how the climate changes suggests that scientific narratives of climate change are socially constructed, biasing scientific narratives to descriptions of gradual as opposed rapid, non-linear change. Evidence of widespread step changes in recent climate records and in model projections of future climate is being overlooked because of this. Step-wise climate change has the potential to produce rapid increases in extreme events that can cross institutional, geographical and sectoral domains.Likewise, orthodox economics is not well suited to the deep uncertainty faced under climate change, requiring a multi-faceted approach to adaptation. The presence of tangible and intangible values range across five adaptation clusters: goods; services; capital assets and infrastructure; social assets and infrastructure; and natural assets and infrastructure. Standard economic methods have difficulty in giving adequate weight to the different types of values across these clusters. They also do not account well for the inter-connectedness of impacts and subsequent responses between agents in the economy. As a result, many highly-valued aspects of human and environmental capital are being overlooked.Recent extreme events are already pressuring areas of public policy, and national strategies for emergency response and disaster risk reduction are being developed as a consequence. However, the potential for an escalation of total damage costs due to rapid change requires a coordinated approach at the institutional level, involving all levels of government, the private sector and civil society.One of the largest risks of maladaptation is the potential for un-owned risks, as risks propagate across domains and responsibility for their management is poorly allocated between public and private interests, and between the roles of the individual and civil society. Economic strategies developed by the disaster community for disaster response and risk reduction provide a base to work from, but many gaps remain.We have developed a framework for valuing adaptation that has the following aspects: the valuation of impacts thus estimating values at risk, the evaluation of different adaptation options and strategies based on cost, and the valuation of benefits expressed as a combination of the benefits of avoided damages and a range of institutional values such as equity, justice, sustainability and profit.The choice of economic methods and tools used to assess adaptation depends largely on the ability to constrain uncertainty around problems (predictive uncertainty) and solutions (outcome uncertainty). Orthodox methods can be used where both are constrained, portfolio methodologies where problems are constrained and robust methodologies where solutions are constrained. Where both are unconstrained, process-based methods utilising innovation methods and adaptive management are most suitable. All methods should involve stakeholders where possible.Innovative processes methods that enable transformation will be required in some circumstances, to allow institutions, sectors and communities to prepare for anticipated major change

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    MANAGING THE INCONCEIVABLE: PARTICIPATORY ASSESSMENTS OF IMPACTS AND RESPONSES TO EXTREME CLIMATE CHANGE

    Get PDF
    A comprehensive understanding of the implications of extreme climate change requires an in-depth exploration of the perceptions and reactions of the affected stakeholder groups and the lay public. The project on “Atlantic sea level rise: Adaptation to imaginable worst-case climate change” (Atlantis) has studied one such case, the collapse of the West Antarctic Ice Sheet and a subsequent 5-6 meter sea-level rise. Possible methods are presented for assessing the societal consequences of impacts and adaptation options in selected European regions by involving representatives of pertinent stakeholders. Results of a comprehensive review of participatory integrated assessment methods with a view to their applicability in climate impact studies are summarized including Simulation-Gaming techniques, the Policy Exercise method, and the Focus Group technique. Succinct presentations of these three methods are provided together with short summaries of relevant earlier applications to gain insights into the possible design options. Building on these insights, four basic versions of design procedures suitable for use in the Atlantis project are presented. They draw on design elements of several methods and combine them to fit the characteristics and fulfill the needs of addressing the problem of extreme sea-level rise. The selected participatory techniques and the procedure designs might well be useful in other studies assessing climate change impacts and exploring adaptation options.sea level rise, West Antarctic ice sheet, climate change

    Water Partnership Program Annual Report 2011: "Strengthen, Secure, Sustain"

    Get PDF
    This annual report outlines the World Bank's Water Partnership Program's activities and progress in its key focus areas of water resources management, climate change, food security, and energy security. The program is a multi-donor trust that was established in 2009 and is transitioning, as of June 2012, into a bolder Phase II of its operations. In addition to investing in research, technology and practice, the program is building partnerships, networks, and capacity, and working towards its new objective of green growth

    Achieving urban climate adaptation in Europe and Central Asia

    Get PDF
    Many cities across Europe and Central Asia are experiencing the impacts of climate change, but most have not integrated climate adaptation into their agendas. This paper examines the threats faced and measures that can be taken by cities in the region to protect buildings, heritage sites, municipal functions, and vulnerable urban populations. In general, local governments must be proactive in ensuring that existing buildings are climate ready, paying particular attention to emerging technologies for retrofitting the prefabricated, panel style buildings that dominate the landscape while assessing the viability of homes situated in flood plains, coastal areas, and steep slopes. They also must ensure that new developments and buildings are designed in ways that account for climatic fluctuations. Although the resilience of all populations needs to be considered, historical patterns of discrimination require that special provisions are made for the poor and for ethnic minorities such as the Roma because these groups will be most at risk, but are least likely to have access to adequate resources. Urban climate adaptation requires national-level support and local commitment. However, centralized planning and expert-led decision-making under the former regimes may affect the ability of cities to pursue programmatic approaches to adaptation. Therefore, while national governments need to make adaptation a policy priority and ensure that municipalities have adequate resources, local government agencies and departments must be transparent in their actions and introduce participatory and community-based measures that demonstrate respect for diverse stakeholders and perspectives.Wetlands,Climate Change Mitigation and Green House Gases,Environmental Economics&Policies,Science of Climate Change,Climate Change Economics
    • 

    corecore