369 research outputs found

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Handbook of Computational Intelligence in Manufacturing and Production Management

    Get PDF
    Artificial intelligence (AI) is simply a way of providing a computer or a machine to think intelligently like human beings. Since human intelligence is a complex abstraction, scientists have only recently began to understand and make certain assumptions on how people think and to apply these assumptions in order to design AI programs. It is a vast knowledge base discipline that covers reasoning, machine learning, planning, intelligent search, and perception building. Traditional AI had the limitations to meet the increasing demand of search, optimization, and machine learning in the areas of large, biological, and commercial database information systems and management of factory automation for different industries such as power, automobile, aerospace, and chemical plants. The drawbacks of classical AI became more pronounced due to successive failures of the decade long Japanese project on fifth generation computing machines. The limitation of traditional AI gave rise to development of new computational methods in various applications of engineering and management problems. As a result, these computational techniques emerged as a new discipline called computational intelligence (CI)

    Overview of Multi-Objective Optimization Approaches in Construction Project Management

    Get PDF
    The difficulties that are met in construction projects include budget issues, contractual time constraints, complying with sustainability rating systems, meeting local building codes, and achieving the desired quality level, to name but a few. Construction researchers have proposed and construction practitioners have used optimization strategies to meet various objectives over the years. They started out by optimizing one objective at a time (e.g., minimizing construction cost) while disregarding others. Because the objectives of construction projects often conflict with each other, single-objective optimization does not offer practical solutions as optimizing one objective would often adversely affect the other objectives that are not being optimized. They then experimented with multi-objective optimization. The many multi-objective optimization approaches that they used have their own advantages and drawbacks when used in some scenarios with different sets of objectives. In this chapter, a review is presented of 16 multi-objective optimization approaches used in 55 research studies performed in the construction industry and that were published in the period 2012–2016. The discussion highlights the strengths and weaknesses of these approaches when used in different scenarios

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning

    ACO-RR: Ant Colony Optimization Ridge Regression in Reuse of Smart City System

    Full text link
    © 2019, Springer Nature Switzerland AG. With the rapid development of artificial intelligence, governments of different countries have been focusing on building smart cities. To build a smart city is a system construction process which not only requires a lot of human and material resources, but also takes a long period of time. Due to the lack of enough human and material resources, it is a key challenge for lots of small and medium-sized cities to develop the intelligent construction, compared with the large cities with abundant resources. Reusing the existing smart city system to assist the intelligent construction of the small and medium-sizes cities is a reasonable way to solve this challenge. Following this idea, we propose a model of Ant Colony Optimization Ridge Regression (ACO-RR), which is a smart city evaluation method based on the ridge regression. The model helps small and medium-sized cities to select and reuse the existing smart city systems according to their personalized characteristics from different successful stories. Furthermore, the proposed model tackles the limitation of ridge parameters’ selection affecting the stability and generalization ability, because the parameters of the traditional ridge regression is manually random selected. To evaluate our model performance, we conduct experiments on real-world smart city data set. The experimental results demonstrate that our model outperforms the baseline methods, such as support vector machine and neural network

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    Single-objective and multi-objective optimization using the HUMANT algorithm

    Full text link

    Decision support systems for forest management: a comparative analysis and assessment

    Full text link
    Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.compag.2013. 12.005.[EN] Decision Support Systems (DSS) are essential tools for forest management practitioners to help take account of the many environmental, economic, administrative, legal and social aspects in forest management. The most appropriate techniques to solve a particular instance usually depend on the characteristics of the decision problem. Thus, the objective of this article is to evaluate the models and methods that have been used in developing DSS for forest management, taking into account all important features to categorize the forest problems. It is interesting to know the appropriate methods to answer specific problems, as well as the strengths and drawbacks of each method. We have also pointed out new approaches to deal with the newest trends and issues. The problem nature has been related to the temporal scale, spatial context, spatial scale, number of objectives and decision makers or stakeholders and goods and services involved. Some of these problem dimensions are inter-related, and we also found a significant relationship between various methods and problem dimensions, all of which have been analysed using contingency tables. The results showed that 63% of forest DSS use simulation modelling methods and these are particularly related to the spatial context and spatial scale and the number of people involved in taking a decision. The analysis showed how closely Multiple Criteria Decision Making (MCDM) is linked to problem types involving the consideration of the number of objectives, also with the goods and services. On the other hand, there was no significant relationship between optimization and statistical methods and problem dimensions, although they have been applied to approximately 60% and 16% of problems solved by DSS for forest management, respectively. Metaheuristics and spatial statistical methods are promising new approaches to deal with certain problem formulations and data sources. Nine out of ten DSS used an associated information system (Database and/or Geographic Information System - GIS), but the availability and quality of data continue to be an important constraining issue, and one that could cause considerable difficulty in implementing DSS in practice. Finally, the majority of DSS do not include environmental and social values and focus largely on market economic values. The results suggest a strong need to improve the capabilities of DSS in this regard, developing and applying MCDM models and incorporating them in the design of DSS for forest management in coming years.The authors acknowledge the support received from European Cooperation in Science and Technology (COST Action FP0804 - Forest Management Decision Support Systems "FORSYS"), the Ministry of Economy and Competitiveness through the research project Multiple Criteria and Group Decision Making integrated into Sustainable Management, Ref. ECO2011-27369 and Ministry of Education (Training Plan of University Teaching). We also thank the editor and reviewers for their suggestions to improve the paper.Segura Maroto, M.; Ray, D.; Maroto Álvarez, MC. (2014). Decision support systems for forest management: a comparative analysis and assessment. Computers and Electronics in Agriculture. 101:55-67. https://doi.org/10.1016/j.compag.2013.12.005S556710

    Time-cost-quality trade-off analysis for construction projects

    Get PDF
    The main objective of construction projects is to finish the project according to an available budget, within a planned schedule, and achieving a pre-specified extent of quality. Therefore, time, cost, and quality are considered the most important attributes of construction projects. The purpose of this study is to incorporate quality into the traditional two-dimensional time-cost trade-off (TCT) in order to develop an advanced three-dimensional time-cost-quality trade-off (TCQT) approach. Time, cost, and quality of construction projects are interrelated and have impacts on each other. It is a challenging task to strike a balance among these three conflicting objectives of construction projects since no one solution can be optimal for the three objectives. The overall performance of a project regarding time, cost, and quality is determined by the duration, cost, and quality of its activities. These attributes of each activity depend on the execution option by which the activity’s work is completed. It is required to develop an approach that is capable of finding an optimal or near optimal set of execution options for the project’s activities in order to minimize the project’s total cost and total duration, while its overall quality is maximized. For the aforementioned purpose, three various Microsoft Excel based TCQT models have been developed as follows: • First, a simplified model is developed with the objective of optimizing the total duration, cost, and quality of simple construction projects utilizing the GA-based Excel add in Evolver. • Second, a stochastic model is developed with the objective of optimizing the total duration, cost, and quality of construction projects applying the PERT approach in order to consider uncertainty associated with the performance of execution options and the whole project. • Third, an advanced multi objective optimization model is developed utilizing a self-developed optimization tool having the following capabilities: 1. Selecting an appropriate execution option for each activity within a considered project to optimize the objectives of time, cost, and quality. 2. Considering the discrete nature of duration, cost, and quality of various options for executing each activity. 3. Applying three various optimization approaches, which are the Goal Programming (GP), the Modified Adaptive Weight Approach (MAWA), and the Non-dominated Sorting Genetic Algorithms (NSGAII). 4. Analyzing both TCT and TCQT problems. 5. Considering finish-to-finish, start-to-start, and start-to-finish dependency relationships in addition to the traditional finish-to-start relationships among activities. 6. Considering any number of successors and predecessors for activities. 7. User-friendly input and output interfaces to be used for large-scale projects. To validate the developed models and demonstrate their efficiency, they were applied to case studies introduced in literature. Results obtained by the developed models demonstrated their effectiveness and efficiency in analyzing both TCT and TCQT problems
    corecore