187 research outputs found

    C2MS: Dynamic Monitoring and Management of Cloud Infrastructures

    Full text link
    Server clustering is a common design principle employed by many organisations who require high availability, scalability and easier management of their infrastructure. Servers are typically clustered according to the service they provide whether it be the application(s) installed, the role of the server or server accessibility for example. In order to optimize performance, manage load and maintain availability, servers may migrate from one cluster group to another making it difficult for server monitoring tools to continuously monitor these dynamically changing groups. Server monitoring tools are usually statically configured and with any change of group membership requires manual reconfiguration; an unreasonable task to undertake on large-scale cloud infrastructures. In this paper we present the Cloudlet Control and Management System (C2MS); a system for monitoring and controlling dynamic groups of physical or virtual servers within cloud infrastructures. The C2MS extends Ganglia - an open source scalable system performance monitoring tool - by allowing system administrators to define, monitor and modify server groups without the need for server reconfiguration. In turn administrators can easily monitor group and individual server metrics on large-scale dynamic cloud infrastructures where roles of servers may change frequently. Furthermore, we complement group monitoring with a control element allowing administrator-specified actions to be performed over servers within service groups as well as introduce further customized monitoring metrics. This paper outlines the design, implementation and evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), 8 page

    Classifying malicious windows executables using anomaly based detection

    Get PDF
    A malicious executable is broadly defined as any program or piece of code designed to cause damage to a system or the information it contains, or to prevent the system from being used in a normal manner. A generic term used to describe any kind of malicious software is Maiware, which includes Viruses, Worms, Trojans, Backdoors, Root-kits, Spyware and Exploits. Anomaly detection is technique which builds a statistical profile of the normal and malicious data and classifies unseen data based on these two profiles. A detection system is presented here which is anomaly based and focuses on the Windows® platform. Several file infection techniques were studied to understand what particular features in the executable binary are more susceptible to being used for the malicious code propagation. A framework is presented for collecting data for both static (non-execution based) as well as dynamic (execution based) analysis of the malicious executables. Two specific features are extracted using static analysis, Windows API (from the Import Address Table of the Portable Executable Header) and the hex byte frequency count (collected using Hexdump utility) which have been explained in detail. Dynamic analysis features which were extracted are briefly mentioned and the major challenges faced using this data is explained. Classification results using Support Vector Machines for anomaly detection is shown for the two static analysis features. Experimental results have provided classification results with up to 94% accuracy for new, previously unseen executables

    Ground Systems Development Environment (GSDE) interface requirements and prototyping plan

    Get PDF
    This report describes the data collection and requirements analysis effort of the Ground System Development Environment (GSDE) Interface Requirements study. It identifies potential problems in the interfaces among applications and processors in the heterogeneous systems that comprises the GSDE. It describes possible strategies for addressing those problems. It also identifies areas for further research and prototyping to demonstrate the capabilities and feasibility of those strategies and defines a plan for building the necessary software prototypes

    A Quick Review of On-Disk Layout of Some Popular Disk File Systems

    Get PDF
    Disk file systems are being researched since the inception of first magnetic disk in 1956 by IBM. As such, many good disk file system designs have been drafted and implemented. Every file system design addressed a problem at the time of its development and efficiently mitigated it. The augmented or new designs rectified the flaws in previous designs or provided a new concept in file system design. As such, there are many file systems that have been successfully d in operating systems. Among these designs, some file systems have made an influential impact on the file system design because of their capability to cope up with change in hardware technology and/or user requirements or because of their innovation in file system ign or because time favored them which allowed them to find space in popular operating systems. In this paper, we vide a quick review of on-disk layout of some popular disk file systems across many popular platforms like Windows, Linu
    corecore