12 research outputs found

    基于加密图像的可逆信息隐藏

    Get PDF
    加密图像的可逆信息隐藏对于数据处理过程中的信息安全可以起到双重保险的作用,加密对数据信息进行保护,而嵌入的秘密数据可以起到在解密后监视多媒体数据的传输中是否被篡改,验证其完整性和原始载体的无损恢复。本文阐述了信息隐藏技术,介绍可逆信息隐藏技术的研究现状,分析了基于加法同态的直方图多峰值平移的可逆信息隐藏算法与基于Paillier同态公钥加密与预测误差的可逆信息隐藏算法。课题项目:2018福建省中青年教师教育科研项目“科技类”课题,项目编号:JT180830;;课题项目:2018年泉州市科协资助项目,批准文号:泉科协【2018】65

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications

    Markov bidirectional transfer matrix for detecting LSB speech steganography with low embedding rates

    Get PDF
    Steganalysis with low embedding rates is still a challenge in the field of information hiding. Speech signals are typically processed by wavelet packet decomposition, which is capable of depicting the details of signals with high accuracy. A steganography detection algorithm based on the Markov bidirectional transition matrix (MBTM) of the wavelet packet coefficient (WPC) of the second-order derivative-based speech signal is proposed. On basis of the MBTM feature, which can better express the correlation of WPC, a Support Vector Machine (SVM) classifier is trained by a large number of Least Significant Bit (LSB) hidden data with embedding rates of 1%, 3%, 5%, 8%,10%, 30%, 50%, and 80%. LSB matching steganalysis of speech signals with low embedding rates is achieved. The experimental results show that the proposed method has obvious superiorities in steganalysis with low embedding rates compared with the classic method using histogram moment features in the frequency domain (HMIFD) of the second-order derivative-based WPC and the second-order derivative-based Mel-frequency cepstral coefficients (MFCC). Especially when the embedding rate is only 3%, the accuracy rate improves by 17.8%, reaching 68.5%, in comparison with the method using HMIFD features of the second derivative WPC. The detection accuracy improves as the embedding rate increases

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Şifreli ve şifresiz videolar için yinelemeli histogram değiştirme tabanlı tersinir video damgalama

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Bu tezde şifresiz ve şifreli videolar için tersinir video damgalama yöntemleri geliştirilmiştir. Her iki durumda da, video çerçeveleri arasındaki zamansal ilinti, hareket dengelemeli çerçeve aradeğerlemesi kullanılarak değerlendirilmiş ve damgalamada görüntüler için geliştirilmiş yinelemeli histogram değiştirime yönteminden faydalanılmıştır. Her bir çerçeve için tersinirliğin garanti edilmesi ve toplam kapasitenin çerçevelere eşit bir biçimde dağıtılması problemlerinden dolayı yinelemeli histogram değiştirme yöntemi tersinir şifresiz video damgalamada doğrudan kullanılamaz. Bu tezde, bu iki problemin çözümünde özgün fikirler önerilmiştir. Önerilen yöntem, literatürde sıklıkla kullanılan video dizilerinde test edilmiş ve yöntemin mevcut tersinir şifresiz video damgalama yöntemlerinden kapasite ve bozunum performansı bakımından daha iyi sonuçlar verdiği bilgisayar benzetimleri ile gösterilmiştir. Şifreli videolar için geliştirilen yöntemde, damgalama için çerçevede gerekli olan boşluk şifreleme öncesi oluşturulmaktadır. Boşluk oluşturma işlemi, orijinal çerçevedeki belirli piksellerin en düşük anlamlı bitlerinin ilgili çerçevenin hareket dengelenmiş aradeğerleme hatalarına yinelemeli histogram değiştirme yöntemi ile saklanması ile gerçekleştirilir. Damganın boşluk oluşturulmuş şifreli çerçevedeki piksellerin en düşük anlamlı bitleri ile yer değiştirilmesi ile damgalama işlemi tamamlanır. Orijinal video bir şifreleme anahtarı ile şifrelenir ve şifrelenmiş video bir damgalama anahtarı ile damgalanır. Damganın çıkartılması ve şifrenin çözülmesi işlemleri birbirinden bağımsız bir biçimde gerçekleştirilebilir. Her iki anahtarın bilinmesi durumunda damga ve orijinal video kayıpsız geri elde edilebilmektedir. Sadece damgalama anahtarının bilinmesi durumunda damgalanmış şifreli videodan damga çıkartılabilmekte fakat videonun içeriğine erişilememektedir. Sadece şifreleme anahtarı bilindiğinde ise damgaya erişilmeksizin orijinal videonun bozunumlu bir versiyonu elde edilebilmektedir. Bilgisayar benzetimleri önerilen yöntemin tersinir şifreli video damgalama uygulamalarındaki kullanılabilirliğini kanıtlamaktadır.In this thesis, reversible video watermarking methods are developed for plain and encrypted video. In both cases, temporal correlation among frames in the video are exploited by using motion compensated frame interpolation and recursive histogram modification algorithm developed for images are used in watermarking. The recursive histogram modification can not be used directly for reversible plain video watermarking because of the important problems of ensuring reversibility for each frame and distribution of total capacity among frames. In this thesis, novel ideas are proposed to solve these two problems. The proposed method is tested on the video sequences commonly used in the literature. It is shown to give better performance than the existing reversible plain video watermarking algorithms in terms of capacity and distortion by means of computer simulations. In the method developed for encrypted video, room required for the watermark is created before encryption. The room creating process is achieved by embedding the original least significant bits of some pixels of the frame into the corresponding motion compensated interpolation errors through recursive histogram modification. Watermarking is carried out by replacing the least significant bits of the pixels in the room reserved encrypted frame by the watermark bits. The original video is encrypted with an encryption key and the encrypted video is watermarked with a data hiding key. Watermark decoding and video decryption operations can be performed independently. The original video can be restored and the watermark can be decoded without error from the watermarked encrypted video if both keys are known. The watermark can be decoded from the the watermarked encrypted video but video content can not be accessed when only the data hiding key is known. A video signal close to the original one can be obtained without having access to the watermark when only the encryption key is available. Computer simulations prove applicability of the method in encrypted domain reversible video watermarking applications

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore