996 research outputs found

    Heuristic strategies for NFV-enabled renewable and non-renewable energy management in the future IoT world

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The ever-growing energy demand and the CO2 emissions caused by energy production and consumption have become critical concerns worldwide and drive new energy management and consumption schemes. In this regard, energy systems that promote green energy, customer-side participation enabled by the Internet of Things (IoT) technologies, and adaptive consumption mechanisms implemented on advanced communications technologies such as the Network Function Virtualization (NFV) emerge as sustainable and de-carbonized alternatives. On these modern schemes, diverse management algorithmic solutions can be deployed to promote the interaction between generation and consumption sides and optimize the use of available energy either from renewable or non-renewable sources. However, existing literature shows that management solutions considering features such as the dynamic nature of renewable energy generation, prioritization in energy provisioning if needed, and time-shifting capabilities to adapt the workloads to energy availability present a complexity NP-Hard. This condition imposes limits on applicability to a small number of energy demands or time-shifting values. Therefore, faster and less complex adaptive energy management approaches are needed. To meet these requirements, this paper proposes three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs) that, when deployed at the NFV domain, seeks the best possible scheduling of demands that lead to efficient energy utilization. The performance of the algorithmic strategies is validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and processing of demands. Additionally, simulation results reveal that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands.This work was supported by the Ministerio de Ciencia e Innovación of the Spanish Government under Project PID2019-108713RB-C51. The work of Christian Tipantuña was supported in part by the Escuela Politécnica Nacional and in part by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT).Peer ReviewedPostprint (published version

    Optimal Home Energy Management System for Committed Power Exchange Considering Renewable Generations

    Get PDF
    This thesis addresses the complexity of SH operation and local renewable resources optimum sizing. The effect of different criteria and components of SH on the size of renewable resources and cost of electricity is investigated. Operation of SH with the optimum size of renewable resources is evaluated to study SH annual cost. The effectiveness of SH with committed exchange power functionality is studied for minimizing cost while responding to DR programs

    What Is Energy Internet? Concepts, Technologies, and Future Directions

    Get PDF

    Hierarchical and Distributed Architecture for Large-Scale Residential Demand Response Management

    Get PDF
    The implementation of smart grid brings several challenges to the power system. The ‘prosumer’ concept, proposed by the smart grid, allows small-scale ‘nano-grids’ to buy or sell electric power at their own discretion. One major problem in integrating prosumers is that they tend to follow the same pattern of generation and consumption, which is un-optimal for grid operations. One tool to optimize grid operations is demand response (DR). DR attempts to optimize by altering the power consumption patterns. DR is an integrated tool of the smart grid. FERC Order No. 2222 caters for distributed energy resources, including demand response resources, in participating in energy markets. However, DR contribution of an average residential energy consumer is insignificant. Most residential energy consumers pay a flat price for their energy usage and the established market for residential DR is quite small. In this dissertation, a survey is carried out on the current state-of-the-art in DR research and generalizations of the mathematical models are made. Additionally, a service provider model is developed along with an incentive program and user interfaces (UI). These UIs and incentive program are designed to be attractive and easily comprehended by a large customer base. Furthermore, customer behavior models are developed that characterize the potential customer base, allowing a demand response aggregator to understand and quantify the quality of the customer. Optimization methods for DR management with various characteristics are also explored in this dissertation. Moreover, A scalable demand response management framework that can incorporate millions of participants in the program is introduced. The framework is based on a hierarchical architecture. To improve DR management, hierarchical load forecasting method is studied. Specifically, optimal combination method for hierarchical forecast reconciliation is applied to the DR program. It is shown that the optimal combination for reconciliation of hierarchical predictions could reduce the stress levels of the consumer close to the ideal values for all scenarios

    Internet of things and consumer engagement on retail: State-of-the-art and future directions

    Get PDF
    Purpose The growing complexity of consumer engagement (CE) due to the impact of Internet of things (IoT) has been attracting significant attention from both academics and industry practitioners especially in recent times. Hence, understanding this phenomenon remains very crucial to the body of knowledge. This study conducted a systematic review on IoT and CE with the aim of proposing future research opportunities using the TCCM model. Design/methodology/approach Extant literature studies were systematically examined by sourcing high ranking ABS journals from EBSCO, ScienceDirect and Emerald. A total of 58 articles were included in the final analysis of this research. Findings The analysis established the need to conduct more research on CE due to the impact of new technological implementation in retail. The results further suggest the need for extensive research across African countries and emerging markets to enable broader empirical generalizations of research outcomes. Using the TCCM framework, the authors indicated directions for future empirical research. Originality/value This study exposes the current trends in CE and IoT. The results and analysis are both compelling and verifiable, hence, establishing a firm base of reference for future research in related fields.info:eu-repo/semantics/acceptedVersio

    Contributions to energy-aware demand-response systems using SDN and NFV for fog computing

    Get PDF
    Ever-increasing energy consumption, the depletion of non-renewable resources, the climate impact associated with energy generation, and finite energy-production capacity are important concerns worldwide that drive the urgent creation of new energy management and consumption schemes. In this regard, by leveraging the massive connectivity provided by emerging communications such as the 5G systems, this thesis proposes a long-term sustainable Demand-Response solution for the adaptive and efficient management of available energy consumption for Internet of Things (IoT) infrastructures, in which energy utilization is optimized based on the available supply. In the proposed approach, energy management focuses on consumer devices (e.g., appliances such as a light bulb or a screen). In this regard, by proposing that each consumer device be part of an IoT infrastructure, it is feasible to control its respective consumption. The proposal includes an architecture that uses Network Functions Virtualization (NFV) and Software Defined Networking technologies as enablers to promote the primary use of energy from renewable sources. Associated with architecture, this thesis presents a novel consumption model conditioned on availability in which consumers are part of the management process. To efficiently use the energy from renewable and non-renewable sources, several management strategies are herein proposed, such as the prioritization of the energy supply, workload scheduling using time-shifting capabilities, and quality degradation to decrease- the power demanded by consumers if needed. The adaptive energy management solution is modeled as an Integer Linear Programming, and its complexity has been identified to be NP-Hard. To verify the improvements in energy utilization, an optimal algorithmic solution based on a brute force search has been implemented and evaluated. Because the hardness of the adaptive energy management problem and the non-polynomial growth of its optimal solution, which is limited to energy management for a small number of energy demands (e.g., 10 energy demands) and small values of management mechanisms, several faster suboptimal algorithmic strategies have been proposed and implemented. In this context, at the first stage, we implemented three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs). Then, we incorporated into both the optimal and heuristic strategies a prepartitioning method in which the total set of analyzed services is divided into subsets of smaller size and complexity that are solved iteratively. As a result of the adaptive energy management in this thesis, we present eight strategies, one timal and seven heuristic, that when deployed in communications infrastructures such as the NFV domain, seek the best possible scheduling of demands, which lead to efficient energy utilization. The performance of the algorithmic strategies has been validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and the processing of energy demands. Additionally, the simulation results revealed that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands. This thesis also explores possible application scenarios of both the proposed architecture for adaptive energy management and algorithmic strategies. In this regard, we present some examples, including adaptive energy management in-home systems and 5G networks slicing, energy-aware management solutions for unmanned aerial vehicles, also known as drones, and applicability for the efficient allocation of spectrum in flex-grid optical networks. Finally, this thesis presents open research problems and discusses other application scenarios and future work.El constante aumento del consumo de energía, el agotamiento de los recursos no renovables, el impacto climático asociado con la generación de energía y la capacidad finita de producción de energía son preocupaciones importantes en todo el mundo que impulsan la creación urgente de nuevos esquemas de consumo y gestión de energía. Al aprovechar la conectividad masiva que brindan las comunicaciones emergentes como los sistemas 5G, esta tesis propone una solución de Respuesta a la Demanda sostenible a largo plazo para la gestión adaptativa y eficiente del consumo de energía disponible para las infraestructuras de Internet of Things (IoT), en el que se optimiza la utilización de la energía en función del suministro disponible. En el enfoque propuesto, la gestión de la energía se centra en los dispositivos de consumo (por ejemplo, electrodomésticos). En este sentido, al proponer que cada dispositivo de consumo sea parte de una infraestructura IoT, es factible controlar su respectivo consumo. La propuesta incluye una arquitectura que utiliza tecnologías de Network Functions Virtualization (NFV) y Software Defined Networking como habilitadores para promover el uso principal de energía de fuentes renovables. Asociada a la arquitectura, esta tesis presenta un modelo de consumo condicionado a la disponibilidad en el que los consumidores son parte del proceso de gestión. Para utilizar eficientemente la energía de fuentes renovables y no renovables, se proponen varias estrategias de gestión, como la priorización del suministro de energía, la programación de la carga de trabajo utilizando capacidades de cambio de tiempo y la degradación de la calidad para disminuir la potencia demandada. La solución de gestión de energía adaptativa se modela como un problema de programación lineal entera con complejidad NP-Hard. Para verificar las mejoras en la utilización de energía, se ha implementado y evaluado una solución algorítmica óptima basada en una búsqueda de fuerza bruta. Debido a la dureza del problema de gestión de energía adaptativa y el crecimiento no polinomial de su solución óptima, que se limita a la gestión de energía para un pequeño número de demandas de energía (por ejemplo, 10 demandas) y pequeños valores de los mecanismos de gestión, varias estrategias algorítmicas subóptimos más rápidos se han propuesto. En este contexto, en la primera etapa, implementamos tres estrategias heurísticas: una estrategia codiciosa (GreedyTs), una solución basada en algoritmos genéticos (GATs) y un enfoque de programación dinámica (DPTs). Luego, incorporamos tanto en la estrategia óptima como en la- heurística un método de prepartición en el que el conjunto total de servicios analizados se divide en subconjuntos de menor tamaño y complejidad que se resuelven iterativamente. Como resultado de la gestión adaptativa de la energía en esta tesis, presentamos ocho estrategias, una óptima y siete heurísticas, que cuando se despliegan en infraestructuras de comunicaciones como el dominio NFV, buscan la mejor programación posible de las demandas, que conduzcan a un uso eficiente de la energía. El desempeño de las estrategias algorítmicas ha sido validado a través de extensas simulaciones en varios escenarios, demostrando mejoras en el consumo de energía y el procesamiento de las demandas de energía. Los resultados de la simulación revelaron que los enfoques heurísticos producen soluciones de alta calidad cercanas a las óptimas mientras se ejecutan entre dos y siete órdenes de magnitud más rápido y con aplicabilidad a escenarios con miles y cientos de miles de demandas de energía. Esta tesis también explora posibles escenarios de aplicación tanto de la arquitectura propuesta para la gestión adaptativa de la energía como de las estrategias algorítmicas. En este sentido, presentamos algunos ejemplos, que incluyen sistemas de gestión de energía adaptativa en el hogar, en 5G networkPostprint (published version

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    A Novel Dynamic Appliance Clustering Scheme in a Community Home Energy Management System for Improved Stability and Resiliency of Microgrids

    Get PDF
    Power scheduling of domestic appliances is a vital preference for bridging the gap between demand and generation of electricity in a microgrid. For a stable microgrid, an acceptable mechanism must reduce the peak to average ratio (PAR) of power demand with supplementary benefits for consumers as reduced electricity charges. Recent studies have focused on PAR and cost reduction for a small consumer population. Furthermore, researchers have mainly considered homogeneous consumer loads. This study focuses on residential power scheduling for electricity cost reduction for consumers and load profile PAR curtailment for a relatively large consumer population with non-homogeneous loads. A sample population of 1000 consumers from various classes of society is considered. The proposed dynamic clustered community home energy management system (DCCHEMS) allows the clustering of appliances based on time overlap criteria. Comparatively flatter power demand is attained by utilizing the clustered appliances in conjunction with particle swarm optimization under the influence of user-defined constraints. Modified inclined block rates with real-time electricity pricing strategies are deployed to minimize the electricity costs. DCCHEMS achieved higher efficiency rates in contrast to the traditional non-clustering and static clustering optimization schemes. An improvement of 21% in peak to average ratio, 4% in cost reduction, and 19% in variance to mean ratio is obtained
    corecore