1,148 research outputs found

    Privacy-preserving scoring of tree ensembles : a novel framework for AI in healthcare

    Get PDF
    Machine Learning (ML) techniques now impact a wide variety of domains. Highly regulated industries such as healthcare and finance have stringent compliance and data governance policies around data sharing. Advances in secure multiparty computation (SMC) for privacy-preserving machine learning (PPML) can help transform these regulated industries by allowing ML computations over encrypted data with personally identifiable information (PII). Yet very little of SMC-based PPML has been put into practice so far. In this paper we present the very first framework for privacy-preserving classification of tree ensembles with application in healthcare. We first describe the underlying cryptographic protocols that enable a healthcare organization to send encrypted data securely to a ML scoring service and obtain encrypted class labels without the scoring service actually seeing that input in the clear. We then describe the deployment challenges we solved to integrate these protocols in a cloud based scalable risk-prediction platform with multiple ML models for healthcare AI. Included are system internals, and evaluations of our deployment for supporting physicians to drive better clinical outcomes in an accurate, scalable, and provably secure manner. To the best of our knowledge, this is the first such applied framework with SMC-based privacy-preserving machine learning for healthcare

    Cryptographic Randomized Response Techniques

    Full text link
    We develop cryptographically secure techniques to guarantee unconditional privacy for respondents to polls. Our constructions are efficient and practical, and are shown not to allow cheating respondents to affect the ``tally'' by more than their own vote -- which will be given the exact same weight as that of other respondents. We demonstrate solutions to this problem based on both traditional cryptographic techniques and quantum cryptography.Comment: 21 page

    Communication-efficient distributed oblivious transfer

    Get PDF
    AbstractDistributed oblivious transfer (DOT) was introduced by Naor and Pinkas (2000) [31], and then generalized to (k,ℓ)-DOT-(n1) by Blundo et al. (2007) [8] and Nikov et al. (2002) [34]. In the generalized setting, a (k,ℓ)-DOT-(n1) allows a sender to communicate one of n secrets to a receiver with the help of ℓ servers. Specifically, the transfer task of the sender is distributed among ℓ servers and the receiver interacts with k out of the ℓ servers in order to retrieve the secret he is interested in. The DOT protocols we consider in this work are information-theoretically secure. The known (k,ℓ)-DOT-(n1) protocols require linear (in n) communication complexity between the receiver and servers. In this paper, we construct (k,ℓ)-DOT-(n1) protocols which only require sublinear (in n) communication complexity between the receiver and servers. Our constructions are based on information-theoretic private information retrieval. In particular, we obtain both a specific reduction from (k,ℓ)-DOT-(n1) to polynomial interpolation-based information-theoretic private information retrieval and a general reduction from (k,ℓ)-DOT-(n1) to any information-theoretic private information retrieval. The specific reduction yields (t,τ)-private (k,ℓ)-DOT-(n1) protocols of communication complexity O(n1/⌊(k−τ−1)/t⌋) between a semi-honest receiver and servers for any integers t and τ such that 1⩽t⩽k−1 and 0⩽τ⩽k−1−t. The general reduction yields (t,τ)-private (k,ℓ)-DOT-(n1) protocols which are as communication-efficient as the underlying private information retrieval protocols for any integers t and τ such that 1⩽t⩽k−2 and 0⩽τ⩽k−1−t

    On the Composability of Statistically Secure Random Oblivious Transfer

    Get PDF
    We show that random oblivious transfer protocols that are statistically secure according to a definition based on a list of information-theoretical properties are also statistically universally composable. That is, they are simulatable secure with an unlimited adversary, an unlimited simulator, and an unlimited environment machine. Our result implies that several previous oblivious transfer protocols in the literature that were proven secure under weaker, non-composable definitions of security can actually be used in arbitrary statistically secure applications without lowering the security
    • …
    corecore