7,037 research outputs found

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    Exploratory Study of the Privacy Extension for System Theoretic Process Analysis (STPA-Priv) to elicit Privacy Risks in eHealth

    Full text link
    Context: System Theoretic Process Analysis for Privacy (STPA-Priv) is a novel privacy risk elicitation method using a top down approach. It has not gotten very much attention but may offer a convenient structured approach and generation of additional artifacts compared to other methods. Aim: The aim of this exploratory study is to find out what benefits the privacy risk elicitation method STPA-Priv has and to explain how the method can be used. Method: Therefore we apply STPA-Priv to a real world health scenario that involves a smart glucose measurement device used by children. Different kinds of data from the smart device including location data should be shared with the parents, physicians, and urban planners. This makes it a sociotechnical system that offers adequate and complex privacy risks to be found. Results: We find out that STPA-Priv is a structured method for privacy analysis and finds complex privacy risks. The method is supported by a tool called XSTAMPP which makes the analysis and its results more profound. Additionally, we learn that an iterative application of the steps might be necessary to find more privacy risks when more information about the system is available later. Conclusions: STPA-Priv helps to identify complex privacy risks that are derived from sociotechnical interactions in a system. It also outputs privacy constraints that are to be enforced by the system to ensure privacy.Comment: author's post-prin
    • …
    corecore