3,862 research outputs found

    Probabilistic Kernel Support Vector Machines

    Full text link
    We propose a probabilistic enhancement of standard kernel Support Vector Machines for binary classification, in order to address the case when, along with given data sets, a description of uncertainty (e.g., error bounds) may be available on each datum. In the present paper, we specifically consider Gaussian distributions to model uncertainty. Thereby, our data consist of pairs (xi,Σi)(x_i,\Sigma_i), i∈{1,…,N}i\in\{1,\ldots,N\}, along with an indicator yi∈{−1,1}y_i\in\{-1,1\} to declare membership in one of two categories for each pair. These pairs may be viewed to represent the mean and covariance, respectively, of random vectors ξi\xi_i taking values in a suitable linear space (typically Rn\mathbb R^n). Thus, our setting may also be viewed as a modification of Support Vector Machines to classify distributions, albeit, at present, only Gaussian ones. We outline the formalism that allows computing suitable classifiers via a natural modification of the standard "kernel trick." The main contribution of this work is to point out a suitable kernel function for applying Support Vector techniques to the setting of uncertain data for which a detailed uncertainty description is also available (herein, "Gaussian points").Comment: 6 pages, 6 figure

    Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy

    Full text link
    Non-negative matrix factorization (NMF) has proved effective in many clustering and classification tasks. The classic ways to measure the errors between the original and the reconstructed matrix are l2l_2 distance or Kullback-Leibler (KL) divergence. However, nonlinear cases are not properly handled when we use these error measures. As a consequence, alternative measures based on nonlinear kernels, such as correntropy, are proposed. However, the current correntropy-based NMF only targets on the low-level features without considering the intrinsic geometrical distribution of data. In this paper, we propose a new NMF algorithm that preserves local invariance by adding graph regularization into the process of max-correntropy-based matrix factorization. Meanwhile, each feature can learn corresponding kernel from the data. The experiment results of Caltech101 and Caltech256 show the benefits of such combination against other NMF algorithms for the unsupervised image clustering

    A CASE STUDY ON SUPPORT VECTOR MACHINES VERSUS ARTIFICIAL NEURAL NETWORKS

    Get PDF
    The capability of artificial neural networks for pattern recognition of real world problems is well known. In recent years, the support vector machine has been advocated for its structure risk minimization leading to tolerance margins of decision boundaries. Structures and performances of these pattern classifiers depend on the feature dimension and training data size. The objective of this research is to compare these pattern recognition systems based on a case study. The particular case considered is on classification of hypertensive and normotensive right ventricle (RV) shapes obtained from Magnetic Resonance Image (MRI) sequences. In this case, the feature dimension is reasonable, but the available training data set is small, however, the decision surface is highly nonlinear.For diagnosis of congenital heart defects, especially those associated with pressure and volume overload problems, a reliable pattern classifier for determining right ventricle function is needed. RV¡¦s global and regional surface to volume ratios are assessed from an individual¡¦s MRI heart images. These are used as features for pattern classifiers. We considered first two linear classification methods: the Fisher linear discriminant and the linear classifier trained by the Ho-Kayshap algorithm. When the data are not linearly separable, artificial neural networks with back-propagation training and radial basis function networks were then considered, providing nonlinear decision surfaces. Thirdly, a support vector machine was trained which gives tolerance margins on both sides of the decision surface. We have found in this case study that the back-propagation training of an artificial neural network depends heavily on the selection of initial weights, even though randomized. The support vector machine where radial basis function kernels are used is easily trained and provides decision tolerance margins, in spite of only small margins
    • …
    corecore