23,773 research outputs found

    Probabilistic Analysis of Temporal and Sequential Aspects of Activities of Daily Living for Abnormal Behaviour Detection

    Get PDF
    This paper presents a probabilistic approach for the identification of abnormal behaviour in Activities of Daily Living (ADLs) from dense sensor data collected from 30 participants. The ADLs considered are related to preparing and drinking (i) tea, and (ii) coffee. Abnormal behaviour identified in the context of these activities can be an indicator of a progressive health problem or the occurrence of a hazardous incident. The approach presented considers the temporal and sequential aspects of the actions that are part of each ADL and that vary between participants. The average and standard deviation for the duration and number of steps of each activity are calculated to define the average time and steps and a range within which a behaviour could be considered as normal for each stage and activity. The Cumulative Distribution Function (CDF) is used to obtain the probabilities of abnormal behaviours related to the early and late completion of activities and stages within an activity in terms of time and steps. Analysis shows that CDF can provide precise and reliable results regarding the presence of abnormal behaviour in stages and activities that last over a minute or consist of many steps. Finally, this approach could be used to train machine learning algorithms for abnormal behaviour detection.status: publishe

    Assessing the Impact of Game Day Schedule and Opponents on Travel Patterns and Route Choice using Big Data Analytics

    Get PDF
    The transportation system is crucial for transferring people and goods from point A to point B. However, its reliability can be decreased by unanticipated congestion resulting from planned special events. For example, sporting events collect large crowds of people at specific venues on game days and disrupt normal traffic patterns. The goal of this study was to understand issues related to road traffic management during major sporting events by using widely available INRIX data to compare travel patterns and behaviors on game days against those on normal days. A comprehensive analysis was conducted on the impact of all Nebraska Cornhuskers football games over five years on traffic congestion on five major routes in Nebraska. We attempted to identify hotspots, the unusually high-risk zones in a spatiotemporal space containing traffic congestion that occur on almost all game days. For hotspot detection, we utilized a method called Multi-EigenSpot, which is able to detect multiple hotspots in a spatiotemporal space. With this algorithm, we were able to detect traffic hotspot clusters on the five chosen routes in Nebraska. After detecting the hotspots, we identified the factors affecting the sizes of hotspots and other parameters. The start time of the game and the Cornhuskers’ opponent for a given game are two important factors affecting the number of people coming to Lincoln, Nebraska, on game days. Finally, the Dynamic Bayesian Networks (DBN) approach was applied to forecast the start times and locations of hotspot clusters in 2018 with a weighted mean absolute percentage error (WMAPE) of 13.8%

    Incident Duration Modeling Using Flexible Parametric Hazard-Based Models

    Get PDF
    Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time

    Electromagnetic emission-aware schedulers for the uplink of OFDM wireless communication systems

    Get PDF
    The popularity and convergence of wireless communications have resulted in continuous network upgrades in order to support the increasing demand for bandwidth. However, given that wireless communication systems operate on radiofrequency waves, the health effects of electromagnetic emission from these systems are increasingly becoming a concern due to the ubiquity of mobile communication devices. In order to address these concerns, we propose two schemes (offline and online) for minimizing the EM emission of users in the uplink of OFDM systems, while maintaining an acceptable quality of service. We formulate our offline EM reduction scheme as a convex optimization problem and solve it through water-filling. This is based on the assumption that the long-term channel state information of all the users is known. Given that, in practice, long-term channel state information of all the users cannot always be available, we propose our online EM emission reduction scheme, which is based on minimizing the instantaneous transmit energy per bit of each user. Simulation results show that both our proposed schemes significantly minimize the EM emission when compared to the benchmark classic greedy spectral efficiency based scheme and an energy efficiency based scheme. Furthermore, our offline scheme proves to be very robust against channel prediction errors

    SMS-I: Intelligent Security for Cyber–Physical Systems

    Get PDF
    Critical infrastructures are an attractive target for attackers, mainly due to the catastrophic impact of these attacks on society. In addition, the cyber–physical nature of these infrastructures makes them more vulnerable to cyber–physical threats and makes the detection, investigation, and remediation of security attacks more difficult. Therefore, improving cyber–physical correlations, forensics investigations, and Incident response tasks is of paramount importance. This work describes the SMS-I tool that allows the improvement of these security aspects in critical infrastructures. Data from heterogeneous systems, over different time frames, are received and correlated. Both physical and logical security are unified and additional security details are analysed to find attack evidence. Different Artificial Intelligence (AI) methodologies are used to process and analyse the multi-dimensional data exploring the temporal correlation between cyber and physical Alerts and going beyond traditional techniques to detect unusual Events, and then find evidence of attacks. SMS-I’s Intelligent Dashboard supports decision makers in a deep analysis of how the breaches and the assets were explored and compromised. It assists and facilitates the security analysts using graphical dashboards and Alert classification suggestions. Therefore, they can more easily identify anomalous situations that can be related to possible Incident occurrences. Users can also explore information, with different levels of detail, including logical information and technical specifications. SMS-I also integrates with a scalable and open Security Incident Response Platform (TheHive) that enables the sharing of information about security Incidents and helps different organizations better understand threats and proactively defend their systems and networks.This research was funded by the Horizon 2020 Framework Programme under grant agreement No 832969. This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein. For more information on the project see: http://satie-h2020.eu/.info:eu-repo/semantics/publishedVersio
    • …
    corecore