1,685 research outputs found

    An Information Model for Geographic Greedy Forwarding in Wireless Ad-Hoc Sensor Networks

    Get PDF
    In wireless ad-hoc sensor networks, an important issue often faced in geographic greedy forwarding routing is the "local minimum phenomenon" which is caused by deployment holes and blocks the forwarding process. In this paper, we provide a new information model for the geographic greedy forwarding routing that only forwards the packet within the so-called request zone. Under this new information model, the hole and its affected area are identified easily and quickly in an unsafe area with a labeling process. The greedy forwarding will be blocked if and only if a node inside the unsafe area is used. Due to the shape of the request zone, an unsafe area can be estimated as a rectangular region in the local view of unsafe nodes. With such estimate information, the new routing method proposed in this paper will avoid blocking by holes and achieve better performance in routing time while the cost of information construction is greatly reduced compared with the best results known to date.Department of ComputingRefereed conference pape

    Improving Routing Efficiency through Intermediate Target Based Geographic Routing

    Get PDF
    The greedy strategy of geographical routing may cause the local minimum problem when there is a hole in the routing area. It depends on other strategies such as perimeter routing to find a detour path, which can be long and result in inefficiency of the routing protocol. In this paper, we propose a new approach called Intermediate Target based Geographic Routing (ITGR) to solve the long detour path problem. The basic idea is to use previous experience to determine the destination areas that are shaded by the holes. The novelty of the approach is that a single forwarding path can be used to determine a shaded area that may cover many destination nodes. We design an efficient method for the source to find out whether a destination node belongs to a shaded area. The source then selects an intermediate node as the tentative target and greedily forwards packets to it, which in turn forwards the packet to the final destination by greedy routing. ITGR can combine multiple shaded areas to improve the efficiency of representation and routing. We perform simulations and demonstrate that ITGR significantly reduces the routing path length, compared with existing geographic routing protocols

    A Cross-Layer Design Based on Geographic Information for Cooperative Wireless Networks

    Full text link
    Most of geographic routing approaches in wireless ad hoc and sensor networks do not take into consideration the medium access control (MAC) and physical layers when designing a routing protocol. In this paper, we focus on a cross-layer framework design that exploits the synergies between network, MAC, and physical layers. In the proposed CoopGeo, we use a beaconless forwarding scheme where the next hop is selected through a contention process based on the geographic position of nodes. We optimize this Network-MAC layer interaction using a cooperative relaying technique with a relay selection scheme also based on geographic information in order to improve the system performance in terms of reliability.Comment: in 2010 IEEE 71st Vehicular Technology Conference, 201
    corecore