334 research outputs found

    Interactive analogical retrieval: practice, theory and technology

    Get PDF
    Analogy is ubiquitous in human cognition. One of the important questions related to understanding the situated nature of analogy-making is how people retrieve source analogues via their interactions with external environments. This dissertation studies interactive analogical retrieval in the context of biologically inspired design (BID). BID involves creative use of analogies to biological systems to develop solutions for complex design problems (e.g., designing a device for acquiring water in desert environments based on the analogous fog-harvesting abilities of the Namibian Beetle). Finding the right biological analogues is one of the critical first steps in BID. Designers routinely search online in order to find their biological sources of inspiration. But this task of online bio-inspiration seeking represents an instance of interactive analogical retrieval that is extremely time consuming and challenging to accomplish. This dissertation focuses on understanding and supporting the task of online bio-inspiration seeking. Through a series of field studies, this dissertation uncovered the salient characteristics and challenges of online bio-inspiration seeking. An information-processing model of interactive analogical retrieval was developed in order to explain those challenges and to identify the underlying causes. A set of measures were put forth to ameliorate those challenges by targeting the identified causes. These measures were then implemented in an online information-seeking technology designed to specifically support the task of online bio-inspiration seeking. Finally, the validity of the proposed measures was investigated through a series of experimental studies and a deployment study. The trends are encouraging and suggest that the proposed measures has the potential to change the dynamics of online bio-inspiration seeking in favor of ameliorating the identified challenges of online bio-inspiration seeking.PhDCommittee Chair: Goel, Ashok; Committee Member: Kolodner, Janet; Committee Member: Maher, Mary Lou; Committee Member: Nersessian, Nancy; Committee Member: Yen, Jeannett

    Towards a design process for computer-aided biomimetics

    Get PDF
    Computer-Aided Biomimetics (CAB) tools aim to support the integration of relevant biological knowledge into biomimetic problem-solving processes. Specific steps of biomimetic processes that require support include the identification, selection and abstraction of relevant biological analogies. Existing CAB tools usually aim to support these steps by describing biological systems in terms of functions, although engineering functions do not map naturally to biological functions. Consequentially, the resulting static, functional view provides an incomplete understanding of biological processes, which are dynamic, cyclic and self-organizing. This paper proposes an alternative approach that revolves around the concept of trade-offs. The aim is to include the biological context, such as environmental characteristics, that may provide information crucial to the transfer of biological information to an engineering application. The proposed design process is exemplified by an illustrative case study

    A Cognitive Task as Enrichment for Chimpanzees (\u3ci\u3ePan troglodytes\u3c/i\u3e) in Sanctuary

    Get PDF
    Chimpanzees (Pan troglodytes) hold an especially powerful attraction for researchers interested in cognition and how it developed to the degree observed in humans specifically and primates more generally. Chimpanzees are behaviorally complex primates with compelling data supporting their possession of intricate internal lives. The objective of this study was to simultaneously learn more of the cognitive process of inductive reasoning while also assessing the efficacy of a computerized box as a novel form of enrichment to aid in improving the environment of captive chimpanzees. Three social groups at the retired medical research chimpanzee sanctuary Project Chimps were given voluntary access to an interactive box inspired by previous touchscreen studies. Individuals varied widely in their interactions with the box but did not perform above chance on the preliminary levels of the task. Interest in the box was also observed to correlate negatively with the number of sessions so that exploration in the final sessions were significantly lower than that recorded in the first sessions. These results highlight the need for refinement in provisioning captive chimpanzees with interactive technology as enrichment

    STANDARD ARPU CALCULATION IMPROVEMENT USING ARTIFICIAL INTELLIGENT TECHNIQUES

    Full text link

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    Implications of Computational Cognitive Models for Information Retrieval

    Get PDF
    This dissertation explores the implications of computational cognitive modeling for information retrieval. The parallel between information retrieval and human memory is that the goal of an information retrieval system is to find the set of documents most relevant to the query whereas the goal for the human memory system is to access the relevance of items stored in memory given a memory probe (Steyvers & Griffiths, 2010). The two major topics of this dissertation are desirability and information scent. Desirability is the context independent probability of an item receiving attention (Recker & Pitkow, 1996). Desirability has been widely utilized in numerous experiments to model the probability that a given memory item would be retrieved (Anderson, 2007). Information scent is a context dependent measure defined as the utility of an information item (Pirolli & Card, 1996b). Information scent has been widely utilized to predict the memory item that would be retrieved given a probe (Anderson, 2007) and to predict the browsing behavior of humans (Pirolli & Card, 1996b). In this dissertation, I proposed the theory that desirability observed in human memory is caused by preferential attachment in networks. Additionally, I showed that documents accessed in large repositories mirror the observed statistical properties in human memory and that these properties can be used to improve document ranking. Finally, I showed that the combination of information scent and desirability improves document ranking over existing well-established approaches

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)
    • …
    corecore