695 research outputs found

    The thinning of the liquid layer over a probe in two-phase flow

    Get PDF
    The draining of the thin water film that is formed between a two dimensional, infinite, initially flat oil-water interface and a smooth, symmetric probe, as the interface is advected by a steady and uniform flow parallel to the probe axis, is modelled using classical fluid dynamics. The governing equations are nondimensionalised using values appropriate to the oil extraction industry. The bulk flow is driven by inertia and, in some extremes, surface tension while the viscous effects are initially confined to thin boundary layers on the probe and the interface. The flow in the thin water film is dominated by surface tension, and passes through a series of asymptotic regimes in which inertial forces are gradually overtaken by viscous forces. For each of these regimes, and for those concerning the earlier stages of approach, possible solution strategies are discussed and relevant literature reviewed. Consideration is given to the drainage mechanism around a probe which protrudes a fixed specified distance into the oil. A lubrication analysis of the thin water film may be matched into a capillary-static solution for the outer geometry using a slender transition region if, and only if, the pressure gradient in the film is negative as it meets the static meniscus. The remarkable result is that, in practice, there is a race between rupture in the transition region and rupture at the tip. The analysis is applicable to the case of a very slow far field flow and offers significant insight into the non-static case. Finally, a similar approach is applied to study the motion of the thin water film in the fully inviscid approximation, with surface tension and a density contrast between the fluids

    On the predictions and limitations of the BeckerDoring model for reaction kinetics in micellar surfactant solutions

    Get PDF
    We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker–Döring system of equations, using realistic expressions for the reaction constants fit to Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated time-scales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker–Döring theory for re-equilibration and discuss potential resolutions

    A spectral boundary integral method for inviscid water waves in a finite domain

    Get PDF
    In this paper, we show how the spectral formulation of Baker, Meiron and Orszag can be used to solve for waves on water of infinite depth confined between two flat, vertical walls, and also how it can be modified to take into account water of finite depth with a spatially varying bottom. In each case, we use Chebyshev polynomials as the basis of our representation of the solution and filtering to remove spurious high-frequency modes. We show that spectral accuracy can be achieved until wave breaking, plunging or wall impingment occurs in two model problems

    Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system

    Full text link
    We consider the spreading of a thin two-dimensional droplet on a planar substrate as a prototype system to compare the contemporary model for contact line motion based on interface formation of Shikhmurzaev [Int. J. Multiphas. Flow 19, 589 (1993)], to the more commonly used continuum fluid dynamical equations augmented with the Navier-slip condition. Considering quasistatic droplet evolution and using the method of matched asymptotics, we find that the evolution of the droplet radius using the interface formation model reduces to an equivalent expression for a slip model, where the prescribed microscopic dynamic contact angle has a velocity dependent correction to its static value. This result is found for both the original interface formation model formulation and for a more recent version, where mass transfer from bulk to surface layers is accounted for through the boundary conditions. Various features of the model, such as the pressure behaviour and rolling motion at the contact line, and their relevance, are also considered in the prototype system we adopt.Comment: 45 pages, 18 figure

    The Stochastic Dynamics of Rectangular and V-shaped Atomic Force Microscope Cantilevers in a Viscous Fluid and Near a Solid Boundary

    Full text link
    Using a thermodynamic approach based upon the fluctuation-dissipation theorem we quantify the stochastic dynamics of rectangular and V-shaped microscale cantilevers immersed in a viscous fluid. We show that the stochastic cantilever dynamics as measured by the displacement of the cantilever tip or by the angle of the cantilever tip are different. We trace this difference to contributions from the higher modes of the cantilever. We find that contributions from the higher modes are significant in the dynamics of the cantilever tip-angle. For the V-shaped cantilever the resulting flow field is three-dimensional and complex in contrast to what is found for a long and slender rectangular cantilever. Despite this complexity the stochastic dynamics can be predicted using a two-dimensional model with an appropriately chosen length scale. We also quantify the increased fluid dissipation that results as a V-shaped cantilever is brought near a solid planar boundary.Comment: 10 pages, 15 images, corrected equation (8

    Dynamics and pattern formation in invasive tumor growth

    Full text link
    In this work, we study the in-vitro dynamics of the most malignant form of the primary brain tumor: Glioblastoma Multiforme. Typically, the growing tumor consists of the inner dense proliferating zone and the outer less dense invasive region. Experiments with different types of cells show qualitatively different behavior. Wild-type cells invade a spherically symmetric manner, but mutant cells are organized in tenuous branches. We formulate a model for this sort of growth using two coupled reaction-diffusion equations for the cell and nutrient concentrations. When the ratio of the nutrient and cell diffusion coefficients exceeds some critical value, the plane propagating front becomes unstable with respect to transversal perturbations. The instability threshold and the full phase-plane diagram in the parameter space are determined. The results are in a good agreement with experimental findings for the two types of cells.Comment: 4 pages, 4 figure
    • …
    corecore