11 research outputs found

    On the size of maximally non-hamiltonian digraphs

    Get PDF
    A graph is called maximally non-hamiltonian if it is non-hamiltonian, yet for any two non-adjacent vertices there exists a hamiltonian path between them. In this paper, we naturally extend the concept to directed graphs and bound their size from below and above. Our results on the lower bound constitute our main contribution, while the upper bound can be obtained using a result of Lewin, but we give here a different proof. We describe digraphs attaining the upper bound, but whether our lower bound can be improved remains open

    Planar hypohamiltonian oriented graphs

    Get PDF
    In 1978 Thomassen asked whether planar hypohamiltonian oriented graphs exist. Infinite families of such graphs have since been described but for infinitely many it remained an open question whether planar hypohamiltonian oriented graphs of order exist. In this paper we develop new methods for constructing hypohamiltonian digraphs, which, combined with efficient graph generation algorithms, enable us to fully characterise the orders for which planar hypohamiltonian oriented graphs exist. Our novel methods also led us to discover the planar hypohamiltonian oriented graph of smallest order and size, as well as infinitely many hypohamiltonian orientations of maximal planar graphs. Furthermore, we answer a question related to a problem of Schiermeyer on vertex degrees in hypohamiltonian oriented graphs, and characterise all the orders for which planar hypotraceable oriented graphs exist.Research Foundation Flanders; VSC(Flemish Supercomputer Center);DST‐NRF Centre of Excellence in Mathematical and Statistical Sciences.http://wileyonlinelibrary.com/journal/jgthj2023Mathematics and Applied Mathematic

    Hypohamiltonian and almost hypohamiltonian graphs

    Get PDF
    This Dissertation is structured as follows. In Chapter 1, we give a short historical overview and define fundamental concepts. Chapter 2 contains a clear narrative of the progress made towards finding the smallest planar hypohamiltonian graph, with all of the necessary theoretical tools and techniques--especially Grinberg's Criterion. Consequences of this progress are distributed over all sections and form the leitmotif of this Dissertation. Chapter 2 also treats girth restrictions and hypohamiltonian graphs in the context of crossing numbers. Chapter 3 is a thorough discussion of the newly introduced almost hypohamiltonian graphs and their connection to hypohamiltonian graphs. Once more, the planar case plays an exceptional role. At the end of the chapter, we study almost hypotraceable graphs and Gallai's problem on longest paths. The latter leads to Chapter 4, wherein the connection between hypohamiltonicity and various problems related to longest paths and longest cycles are presented. Chapter 5 introduces and studies non-hamiltonian graphs in which every vertex-deleted subgraph is traceable, a class encompassing hypohamiltonian and hypotraceable graphs. We end with an outlook in Chapter 6, where we present a selection of open problems enriched with comments and partial results

    Research problems from the 18th workshop '3in1' 2009, 3 : two problems on bihomogeneously traceable digraphs

    Get PDF

    Generation and Properties of Snarks

    Full text link
    For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for \emph{snarks}, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the first part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n≀36n\leq 36 vertices. Previously lists up to n=28n=28 vertices have been published. In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.Comment: Submitted for publication V2: various corrections V3: Figures updated and typos corrected. This version differs from the published one in that the Arxiv-version has data about the automorphisms of snarks; Journal of Combinatorial Theory. Series B. 201

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    On finding the best and worst orientations for the metric dimension

    Get PDF
    The (directed) metric dimension of a digraph D, denoted by MD(D), is the size of a smallest subset S of vertices such that every two vertices of D are distinguished via their distances from the vertices in S. In this paper, we investigate the graph parameters BOMD(G) and WOMD(G) which are respectively the smallest and largest metric dimension over all orientations of G. We show that those parameters are related to several classical notions of graph theory and investigate the complexity of determining those parameters. We show that BOMD(G) = 1 if and only if G is hypotraceable (that is has a path spanning all vertices but one), and deduce that deciding whether BOMD(G) ≀ k is NP-complete for every positive integer k. We also show that WOMD(G) ≄ α(G) − 1, where α(G) is the stability number of G. We then deduce that for every fixed positive integer k, we can decide in polynomial time whether WOMD(G) ≀ k. The most significant results deal with oriented forests. We provide a linear-time algorithm to compute the metric dimension of an oriented forest and a linear-time algorithm that, given a forest F , computes an orientation D − with smallest metric dimension (i.e. such that MD(D −) = BOMD(F)) and an orientation D + with largest metric dimension (i.e. such that MD(D +) = WOMD(F))

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF

    An infinite family of planar hypohamiltonian oriented graphs

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Ekonomiese En BestuurswetenskappeLogistie
    corecore