11,472 research outputs found

    Comparison of different optimization criteria for optimal sizing of hybrid active power filters parameters

    Get PDF
    Praise Worthy Prize granted a permission for Brunel University London to archive this article in BURA.Harmonic distortion in power systems has increased considerably due to the increasing use of nonlinear loads in industrial firms and elsewhere. This distortion can give rise to overheating in all sectors of the power system, leading to reduced efficiency, reliability, operational life and sometimes failure. This article seeks to propose a new methodology for the optimal sizing of hybrid active power filter (HPF) parameters in order to overcome the difficulties in hybrid power filters design when estimating the preliminary feasible values of the parameters. Sequential Quadratic Programming based on FORTRAN subroutines is used to find out the planned filter size in two different optimization criteria depending on design concerns. The first criterion is to minimize the total voltage harmonic distortion. The second one is to maximize the load power factor, while taking into account compliance with IEEE standard 519-1992 limits for the total voltage harmonic distortion and the power factor.The effectiveness of the proposed filter is discussed using four exemplary case

    Design of a Low-Voltage Distribution Transformer Based on Inductive Filtering

    Get PDF
    Adopting the connection group structure of Dd0yn11, this paper designs a novel low-voltage (LV) distribution transformer (DT) based on inductive filtering (IF), and verifies the proposed transformer through a comprehensive innovation experiment. Firstly, the functional relationship between valve-side harmonic current and grid-side current was derived according to the winding model, and the filtering features were obtained to compute the impedance between the valve- and grid-side windings. Next, the design calculation was carried out by the engineering magnetic circuit (EMC) method. After that, a three-dimensional (3D) model was established for the proposed transformer on ANSYS Maxwell. The simulation results show that the proposed transformer meets the design requirements on the relevant parameters, and eliminates the harmonic pollution in the grid. Finally, the proposed transformer was proved correct and effective through experiments, and found to stimulate studentsꞌ interest in learning and innovation

    A new control technique for active power filters using a combined genetic algorithm/conventional analysis

    Get PDF
    In this paper, the computational problems associated with the optimization techniques used to evaluate the switching patterns for controlling variable-characteristics active power filters are presented and critically analyzed. Genetic algorithms (GAs) are introduced in this paper to generate a fast and accurate initial starting point in the highly nonlinear optimization space of mathematical optimization techniques. GAs tend to speed up the initialization process by a factor of 13. A combined GA/conventional technique is also proposed and implemented to reduce the associated computational burden associated with the control and, consequently, increasing the speed of response of this class of active filters. Comparisons of these techniques are discussed and presented in conjunction with simulation and practical results for the filter operation

    Design and implementation of a modified fourier analysis harmonic current computation technique for power active filters using DSPs

    Get PDF
    The design and implementation of a harmonic current computation technique based on a modified Fourier analysis, suitable for active power filters incorporating DSPs is presented. The proposed technique is suitable for the monitoring and control of load current harmonics for real-time applications. The derivation of the basic equations based on the proposed technique and the system implementation using the Analogue Devices SHARC processor are presented. The steady state and dynamic performance of the system are evaluated for a range of loading conditions

    Optimal sizing of C-type passive filters under non-sinusoidal conditions

    Get PDF
    In the literature, much attention has been focused on power system harmonics. One of its important effects is degradation of the load power factor. In this article, a C-type filter is used for reducing harmonic distortion, improving system performance, and compensating reactive power in order to improve the load power factor while taking into account economic considerations. Optimal sizing of the C-type filter parameters based on maximization of the load power factor as an objective function is determined. The total installation cost of the C-type filter and that of the conventional shunt (single-tuned) passive filter are comparatively evaluated. Background voltage and load current harmonics are taken into account. Recommendations defined in IEEE standards 519-1992 and 18-2002 are taken as the main constraints in this study. The presented design is tested using four numerical cases taken from previous publications, and the proposed filter results are compared with those of other published techniques. The results validate that the performance of the C-type passive filter as a low-pass filter is acceptable, especially in the case of lower short-circuit capacity systems. The C-type filter may achieve the same power factor with a lower total installation cost than a single-tuned passive filter

    Inductively coupled distributed static compensator for power quality analysis of distribution networks

    Get PDF
    In this research paper, an inductively coupled distributed static compensator (IC-DSTATCOM) for three phase three wire (3P3W) electric power distribution system (EPDS) is proposed. The contraction of power quality (PQ) was marked as a perilous droop mode bump into direct coupled distributed static compensator (DC-DSTATCOM). To regain the PQ, inductive coupling transformer is assisted in conjunction with DC-DSTATCOM. The system equivalent circuit of IC-DSTATCOM is accomplished by take into account of impedance of both transformer and DC-DSTATCOM to reveal the filtering technique. The filtering icos∅ mechanism is performed by following the generalized mathematical approach using MATLAB/Simulink. A case education is reviewed in detail to illustrate the performance of both DC-DSTATCOM and IC-DSTATCOM. The IC-DSTATCOM is amplified healthier as compared to other in terms of harmonics shortening, good power factor, load balancing, and potential regulation. To examine the effectiveness, simulation outputs of the IC-DSTATCOM with different PQ parameter indices are presented by following the benchmark measure of IEEE-2030-7-2017 and IEC-61000-1 system code

    Remote power control strategy based on virtual flux approach for the grid tied power converters

    Get PDF
    The control of active and reactive power for the Renewable Energy Sources (RES) based power plants are very important. The injection of active and reactive power to the grid is normally controlled at the Point of Common Connection (PCC) where this point is typically far away from the power converter station. This paper proposed a controlling principle which is based on virtual flux approach that permits to control remotely the power injected at the PCC. The results will show that the Virtual Flux (VF) estimation is capable to estimate the grid voltage in any point of the network as well as the capability of the control principle to inject the specific amount of active and reactive power at a point that can be some kilometers away. In this paper, the basic principle for the remote power control is presented and the effectiveness of the proposed system has been validated by experimental studies.Postprint (published version

    Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected devices within microgrids

    Get PDF
    Visions of future power systems contain high penetrations of inverters which are used to convert power from dc (direct current) to ac (alternating current) or vice versa. The behavior of these devices is dependent upon the choice and implementation of the control algorithms. In particular, there is a tradeoff between dc bus ripple and ac power quality. This study examines the tradeoffs. Four control modes are examined. Mathematical derivations are used to predict the key implications of each control mode. Then, an inverter is studied both in simulation and in hardware at the 10 kVA scale, in different microgrid environments of grid impedance and power quality. It is found that voltage-drive mode provides the best ac power quality, but at the expense of high dc bus ripple. Sinusoidal current generation and dual-sequence controllers provide relatively low dc bus ripple and relatively small effects on power quality. High-bandwidth dc bus ripple minimization mode works well in environments of low grid impedance, but is highly unsuitable within higher impedance microgrid environments and/or at low switching frequencies. The findings also suggest that the certification procedures given by G5/4, P29 and IEEE 1547 are potentially not adequate to cover all applications and scenarios
    corecore