4,281 research outputs found

    Network Representation Learning: A Survey

    Full text link
    With the widespread use of information technologies, information networks are becoming increasingly popular to capture complex relationships across various disciplines, such as social networks, citation networks, telecommunication networks, and biological networks. Analyzing these networks sheds light on different aspects of social life such as the structure of societies, information diffusion, and communication patterns. In reality, however, the large scale of information networks often makes network analytic tasks computationally expensive or intractable. Network representation learning has been recently proposed as a new learning paradigm to embed network vertices into a low-dimensional vector space, by preserving network topology structure, vertex content, and other side information. This facilitates the original network to be easily handled in the new vector space for further analysis. In this survey, we perform a comprehensive review of the current literature on network representation learning in the data mining and machine learning field. We propose new taxonomies to categorize and summarize the state-of-the-art network representation learning techniques according to the underlying learning mechanisms, the network information intended to preserve, as well as the algorithmic designs and methodologies. We summarize evaluation protocols used for validating network representation learning including published benchmark datasets, evaluation methods, and open source algorithms. We also perform empirical studies to compare the performance of representative algorithms on common datasets, and analyze their computational complexity. Finally, we suggest promising research directions to facilitate future study.Comment: Accepted by IEEE transactions on Big Data; 25 pages, 10 tables, 6 figures and 127 reference

    On the Evolution of Knowledge Graphs: A Survey and Perspective

    Full text link
    Knowledge graphs (KGs) are structured representations of diversified knowledge. They are widely used in various intelligent applications. In this article, we provide a comprehensive survey on the evolution of various types of knowledge graphs (i.e., static KGs, dynamic KGs, temporal KGs, and event KGs) and techniques for knowledge extraction and reasoning. Furthermore, we introduce the practical applications of different types of KGs, including a case study in financial analysis. Finally, we propose our perspective on the future directions of knowledge engineering, including the potential of combining the power of knowledge graphs and large language models (LLMs), and the evolution of knowledge extraction, reasoning, and representation

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201
    • …
    corecore