35 research outputs found

    WAYFINDING AID FOR THE ELDERLY WITH MEMORY DISTURBANCES

    Get PDF
    A global increase in aging population, combined with a growing number of people with dementia, creates new challenges to develop guiding technology for people with memory disturbances in their daily activities. In this study we have tested the prototype of a wayfinding aid using predefined routes. The orientation advice was given through three modalities, visual, audio and tactile signals, two of which were used at a time. Nine subjects, aged 59–90 years (with a median age of 84 years) participated in the user study at a rehabilitation unit in Pyhäjärvi, Finland. Their severity of dementia ranged between mild and severe, and walking abilities ranged from “frail to hobby skier”. In addition, two elderly persons were recruited as control subjects. In most cases, the orientation with the wayfinding aid on predefined routes succeeded, with a few misinterpretations. The most common difficulties included: straying from the defined route, finding the right door, and the attractions of real-life context like other people. The severity of dementia didn’t seem to predict success in orientation with the wayfinding aid. Using the landmarks wasn’t as successful as using “left”, “right” and “go straight on” commands as the wayfinding advice

    Using Embossed QR Codes on Product Packaging for People with Visual Impairments

    Get PDF
    Vision impairment severely impacts quality of life among adult populations. People with vision impairment often have to deal with a number of problems in their every-day life. One of them is related with their shopping and after sales experience. They need assistive tools so that they can get information about the products they shop and store in their home. QR codes is a well-known technology that contains a link and directs mobile users to a specified website. This website can include various and multimodal information related to a product that can easily be received through audio from peopled with visual impairments. In this paper we propose a solution for people with visual impairments in order to improve the way they shop. From the company’s side, QR code labels are printed and placed on the product’s packaging while on the same time a mobile application that supports QR code reading has been implemented. The users, scanning the QR code of a product using the mobile application, can seamlessly be redirected to the product-related audio information. The proposed approach and the implemented mobile application were tested by a group of people with vision impairment in order to assess its usability, satisfaction and intention to use. The evaluation results revealed that people with vision impairment find the provided mobile application useful and easy to use, while they are totally satisfied with the proposed approach, and they intend to use it in the future

    LANDMARKS EVALUATION WITH USE OF QR-CODE FOR POSITIONING INDOOR ENVIRONMENT

    Get PDF
    People tend to lose their sense of direction in closed environments and the role of indoor maps is to assist the user in navigating in these spaces, through understanding the environment, identifying reference points or positioning. Among the several forms of achieving positioning in indoor environments, this research used the method based on image recognition through identification of QR-Code labels, because of their low cost, easy implementation, and because their accuracy is not affected by the environment. As such, this article presents the use of QR-Code markers affixed to possible reference points to determine user positioning in an indoor environment using a mobile device. This study seeks to discover which are the most appropriate sites for placing QR-Codes in an environment, by evaluating what reference points and what type thereof are most used in indoor environments. This study is therefore based on the hypothesis that if initial positioning is obtained only through reference points this is sufficient for users to orient themselves. Through analysis of the results obtained from navigation tasks done by users we were able to obtain data regarding elements most cited as references. The results show that people orient themselves in distinct ways in the same environment and use as their main reference points structural elements of the environment such as stairways, lifts, and decision-making points; in general structural reference points were those most used to support orientation and navigation

    Pozicioniranje i praćenje pješaka u zatvorenom prostoru koristeći senzore pametnih telefona, otkrivanje koraka i algoritam za geokodiranje

    Get PDF
    The paper deals with indoor navigation using inertial sensors (accelerometers, gyroscopes, etc.) built in a smartphone. The main disadvantage of the use of inertial sensors is the accuracy, which rapidly decreases with the increasing time of the measurement. The reason of the deteriorating accuracy is the presence of errors in inertial measurements, which are accumulated in the integration process. The paper describes the determination of a pedestrian trajectory using step detection method, which is improved with utilization of the adaptive step length estimation algorithm. This algorithm reflects the change of the step length with different types of movement. The proposal of the data processing uses information from floormap, what allows the verification of the pedestrian position and detects the collision of the trajectory with the floormap. The proposed algorithm significantly increases the accuracy of the resulting trajectory. Another extension of the proposed algorithm is the implementation of the barometer measurements for determination of the height differences. This fact allows change the floor in a multi-storey buildings. The experimental measurement was realized with a smartphone Samsung Galaxy S4.Rad se bavi navigacijom u zatvorenom prostoru koristeći inercijalne senzore (akcelerometre, žiroskope, itd.) ugrađene u pametne telefone. Najveći nedostatak korištenja inercijalnih senzora je netočnost koja se ubrzano povećava produljenjem vremena mjerenja. Razlog smanjenja točnosti je prisutnost pogrešaka inercijalnih mjerenja koje se akumuliraju kroz proces integracije. Rad opisuje određivanje putanje pješaka koristeći metodu praćenja koraka koja je poboljšana korištenjem algoritma za procjenu prilagodljive duljine koraka. Ovaj algoritam odražava promjene u duljini koraka s različitim vrstama kretanja. Prijedlog obrade podataka koristi informacije iz tlocrta katova što omogućava potvrdu položaja pješaka i otkriva koliziju putanje s tlocrtom. Predloženi algoritam znatno povećava točnost dobivene putanje. Drugi dodatak predloženog algoritma se odnosi na upotrebu barometarskih mjerenja pri određivanju visinskih razlika. Ova činjenica omogućava promjenu kata u višekatnoj zgradi. Eksperimentalno mjerenje je izvršeno uz pomoć pametnog telefona Samsung Galaxy S4

    A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies

    Get PDF
    The research and use of positioning and navigation technologies outdoors has seen a steady and exponential growth. Based on this success, there have been attempts to implement these technologies indoors, leading to numerous studies. Most of the algorithms, techniques and technologies used have been implemented outdoors. However, how they fare indoors is different altogether. Thus, several technologies have been proposed and implemented to improve positioning and navigation indoors. Among them are Infrared (IR), Ultrasound, Audible Sound, Magnetic, Optical and Vision, Radio Frequency (RF), Visible Light, Pedestrian Dead Reckoning (PDR)/Inertial Navigation System (INS) and Hybrid. The RF technologies include Bluetooth, Ultra-wideband (UWB), Wireless Sensor Network (WSN), Wireless Local Area Network (WLAN), Radio-Frequency Identification (RFID) and Near Field Communication (NFC). In addition, positioning techniques applied in indoor positioning systems include the signal properties and positioning algorithms. The prevalent signal properties are Angle of Arrival (AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Received Signal Strength Indication (RSSI), while the positioning algorithms are Triangulation, Trilateration, Proximity and Scene Analysis/ Fingerprinting. This paper presents a state-of-the-art survey of indoor positioning and navigation systems and technologies, and their use in various scenarios. It analyses distinct positioning technology metrics such as accuracy, complexity, cost, privacy, scalability and usability. This paper has profound implications for future studies of positioning and navigation

    Communication technologies and data processing for safety

    Get PDF
    Emergency workers comprise large professional groups like volunteer fire-fighters, police officers, emergency medical staff and so on. Their professions have to deal frequently with a considerable number of a combination of health and safety risk factors, which are often unavoidable. For example, workplace scenes demanding the intervention of emergency workers may be located in remote, difficult to access areas (mountains, sea, caves), and sometimes in extremely difficult weather conditions. Moreover, emergency workers must arrive very rapidly at the disaster scene at any time of the day or night, and there is always the possibility of car crashes or other transportation accidents on the journey to the disaster scene or to hospitals. Others examples are the industrial workplaces, which are inherently places with a high concentration of heavy machinery, fast handling equipments, high heat and pressure pipes, polluted and explosive areas where people work in a relatively small area. Therefore, in an environment where situational awareness and tactical decision making are critical elements to a successful operation, it is really important to have available efficient instruments to ensure the safety for all operators that work in the field. Despite the fact that a lot sophisticated solutions have been used for increasing request due to the growing need of safety concerns by the operators, the mission-critical environments are still considered high-risk environments with serious work safety related issues and higher accident rates than in other workplaces. This study focuses on the safety precautions in outdoor and indoor environments, safety communication and Personal Protective Equipment (PPE) and proposes solutions to ensure secure and reliable communications between forces deployed in the field and their dispatch center, which is often of decisive importance for the work of the emergency services, analyzing two different important case studies. Moreover, we have designed a control system intended as a platform for real-time information capable of monitoring, by means of camera and sensor data harvesting about people and vehicles movements. It provides automatic and semi-automatic risk prevention measures thanks to the work in progress on designing and implementing a first working prototype of sensor network based on RFID BAN. These capabilities are the topic of a larger research project that aims to find the optimal solution in terms of feasibility and practical implementation. To conclude our study, we have developed a indoor navigation system for mobile devices. The application is able to follow the user and it indicates the shortest path to achieve a specific destination. It uses only smartphone motion sensor and not requires the use of extra equipment. Moreover, thanks to an algorithm widely explained afterwards and the use of the gyroscope sensor rather than the compass, the mobile application ensure a very good orientation. The thesis is organized as following: - In the first chapter, to design a radio communication system both for health emergency services and Civil Protection services, different Professional Mobile Radio (PMR) standards was analized. PMR, also known as land mobile radio (LMR) in North America, are field radio communications systems which use portable, mobile, base station, and dispatch console radios. It has referred to a suite of radio mobile network tecnologies deployed for missioncritical users, which need high affordable communication system. In the specific, PMR networks provide radio services for closed user group, group call and push-to-talk, and call set-up times which are generally short compared with cellular system. In addition, they provide communications in extreme situations that might cause failures in other communications network, like 2G or 3G. As a result of the analysis of the main digital PMR standards (TETRA and DMR) used in European countries, we decided to use the DMR standard to design the radio network for 118 service in Sardinia and for Civil Protection service. DMR has been identified as the best solution, which grants cost saving, high coverage, spectral efficiency and simplicity in network configuration and it is well suitable in wide area with a low/medium density of traffic. - The second and third chapter of the thesis are focused on improvement of the safety of operators in a maritime cargo terminal. Hence, a new infrastructure of a maritime cargo terminal has been defined, using a control system for monitoring workplace safety. By combining, in the control system, the inputs from a Body Area Network (BAN) integrated in the safety equipment and from CCTV cameras, a human supervisor is able to achieve an accurate overview of the entire situation in terms of work safety and act accordingly when needed. In addition, we focused even on the design and implementation of a working prototype of an RFID-based BAN sensor network for actively monitoring and preventing workplace safety risks in the same industrial area. This first conceptual and technological analysis, together with the test implementation, is the forerunner of a complex monitoring system in development to be implemented both for the specific case and for any industrial environment. - The last chapter aims to describe an indoor navigation system developed for smartphone android. Specifically, it has been demonstrated how the use of a gyroscope sensor can brings more benefits respect to a compass sensor to get the best detected position. Nowadays, modern mobile devices, such as smartphones and PDAs in general, come to the market already equipped with sensors able to track them as they move, both in outdoor and indoor environment. The sensing technologies embedded in such devices make it ideal for a wide range of location-based services, such as navigation applications. An Inertial Navigation System (INS) uses motion and rotation sensors in order to determine the position, orientation, and velocity of a moving object/user without the need of external infrastructures. This is essential in an indoor environment where common localization systems, such as Global Positioning System (GPS), fail due to severe attenuation or obscuration of the satellite's signal. In inertial navigation systems, localization/ orientation estimation is source-independent. The user's position is calculated in relation to a known starting position using a dead reckoning algorithm and the orientation is usually provided by a digital compass embedded in the smartphone. A digital compass sensor provides the orientation of the device relative to the magnetic north of the earth. However, when it is used in indoor environments, like any magnetic device, it is affected by significant error caused by nearby ferrous materials, as well as local electromagnetic fields. Such errors seriously affect the performance and the accuracy of the system, thus the need to investigate any alternative orientation technique. In the specific, we have developed an early prototype of a pedestrian navigation system for indoor environments based on dead reckoning, 2D barcodes and data from accelerometers and magnetometers. All the sensing and computing technologies of our solution are available in common smartphones. The prototype has been further improved by a new algorithm described afterwards and now it is able to estimate the correct current position of the user, track him inside the building and provide the best path to achieve a specific destination

    Transforming our World through Universal Design for Human Development

    Get PDF
    An environment, or any building product or service in it, should ideally be designed to meet the needs of all those who wish to use it. Universal Design is the design and composition of environments, products, and services so that they can be accessed, understood and used to the greatest extent possible by all people, regardless of their age, size, ability or disability. It creates products, services and environments that meet people’s needs. In short, Universal Design is good design. This book presents the proceedings of UD2022, the 6th International Conference on Universal Design, held from 7 - 9 September 2022 in Brescia, Italy.The conference is targeted at professionals and academics interested in the theme of universal design as related to the built environment and the wellbeing of users, but also covers mobility and urban environments, knowledge, and information transfer, bringing together research knowledge and best practice from all over the world. The book contains 72 papers from 13 countries, grouped into 8 sections and covering topics including the design of inclusive natural environments and urban spaces, communities, neighborhoods and cities; housing; healthcare; mobility and transport systems; and universally- designed learning environments, work places, cultural and recreational spaces. One section is devoted to universal design and cultural heritage, which had a particular focus at this edition of the conference. The book reflects the professional and disciplinary diversity represented in the UD movement, and will be of interest to all those whose work involves inclusive design

    Communication technologies and data processing for safety

    Get PDF
    Emergency workers comprise large professional groups like volunteer fire-fighters, police officers, emergency medical staff and so on. Their professions have to deal frequently with a considerable number of a combination of health and safety risk factors, which are often unavoidable. For example, workplace scenes demanding the intervention of emergency workers may be located in remote, difficult to access areas (mountains, sea, caves), and sometimes in extremely difficult weather conditions. Moreover, emergency workers must arrive very rapidly at the disaster scene at any time of the day or night, and there is always the possibility of car crashes or other transportation accidents on the journey to the disaster scene or to hospitals. Others examples are the industrial workplaces, which are inherently places with a high concentration of heavy machinery, fast handling equipments, high heat and pressure pipes, polluted and explosive areas where people work in a relatively small area. Therefore, in an environment where situational awareness and tactical decision making are critical elements to a successful operation, it is really important to have available efficient instruments to ensure the safety for all operators that work in the field. Despite the fact that a lot sophisticated solutions have been used for increasing request due to the growing need of safety concerns by the operators, the mission-critical environments are still considered high-risk environments with serious work safety related issues and higher accident rates than in other workplaces. This study focuses on the safety precautions in outdoor and indoor environments, safety communication and Personal Protective Equipment (PPE) and proposes solutions to ensure secure and reliable communications between forces deployed in the field and their dispatch center, which is often of decisive importance for the work of the emergency services, analyzing two different important case studies. Moreover, we have designed a control system intended as a platform for real-time information capable of monitoring, by means of camera and sensor data harvesting about people and vehicles movements. It provides automatic and semi-automatic risk prevention measures thanks to the work in progress on designing and implementing a first working prototype of sensor network based on RFID BAN. These capabilities are the topic of a larger research project that aims to find the optimal solution in terms of feasibility and practical implementation. To conclude our study, we have developed a indoor navigation system for mobile devices. The application is able to follow the user and it indicates the shortest path to achieve a specific destination. It uses only smartphone motion sensor and not requires the use of extra equipment. Moreover, thanks to an algorithm widely explained afterwards and the use of the gyroscope sensor rather than the compass, the mobile application ensure a very good orientation. The thesis is organized as following: - In the first chapter, to design a radio communication system both for health emergency services and Civil Protection services, different Professional Mobile Radio (PMR) standards was analized. PMR, also known as land mobile radio (LMR) in North America, are field radio communications systems which use portable, mobile, base station, and dispatch console radios. It has referred to a suite of radio mobile network tecnologies deployed for missioncritical users, which need high affordable communication system. In the specific, PMR networks provide radio services for closed user group, group call and push-to-talk, and call set-up times which are generally short compared with cellular system. In addition, they provide communications in extreme situations that might cause failures in other communications network, like 2G or 3G. As a result of the analysis of the main digital PMR standards (TETRA and DMR) used in European countries, we decided to use the DMR standard to design the radio network for 118 service in Sardinia and for Civil Protection service. DMR has been identified as the best solution, which grants cost saving, high coverage, spectral efficiency and simplicity in network configuration and it is well suitable in wide area with a low/medium density of traffic. - The second and third chapter of the thesis are focused on improvement of the safety of operators in a maritime cargo terminal. Hence, a new infrastructure of a maritime cargo terminal has been defined, using a control system for monitoring workplace safety. By combining, in the control system, the inputs from a Body Area Network (BAN) integrated in the safety equipment and from CCTV cameras, a human supervisor is able to achieve an accurate overview of the entire situation in terms of work safety and act accordingly when needed. In addition, we focused even on the design and implementation of a working prototype of an RFID-based BAN sensor network for actively monitoring and preventing workplace safety risks in the same industrial area. This first conceptual and technological analysis, together with the test implementation, is the forerunner of a complex monitoring system in development to be implemented both for the specific case and for any industrial environment. - The last chapter aims to describe an indoor navigation system developed for smartphone android. Specifically, it has been demonstrated how the use of a gyroscope sensor can brings more benefits respect to a compass sensor to get the best detected position. Nowadays, modern mobile devices, such as smartphones and PDAs in general, come to the market already equipped with sensors able to track them as they move, both in outdoor and indoor environment. The sensing technologies embedded in such devices make it ideal for a wide range of location-based services, such as navigation applications. An Inertial Navigation System (INS) uses motion and rotation sensors in order to determine the position, orientation, and velocity of a moving object/user without the need of external infrastructures. This is essential in an indoor environment where common localization systems, such as Global Positioning System (GPS), fail due to severe attenuation or obscuration of the satellite's signal. In inertial navigation systems, localization/ orientation estimation is source-independent. The user's position is calculated in relation to a known starting position using a dead reckoning algorithm and the orientation is usually provided by a digital compass embedded in the smartphone. A digital compass sensor provides the orientation of the device relative to the magnetic north of the earth. However, when it is used in indoor environments, like any magnetic device, it is affected by significant error caused by nearby ferrous materials, as well as local electromagnetic fields. Such errors seriously affect the performance and the accuracy of the system, thus the need to investigate any alternative orientation technique. In the specific, we have developed an early prototype of a pedestrian navigation system for indoor environments based on dead reckoning, 2D barcodes and data from accelerometers and magnetometers. All the sensing and computing technologies of our solution are available in common smartphones. The prototype has been further improved by a new algorithm described afterwards and now it is able to estimate the correct current position of the user, track him inside the building and provide the best path to achieve a specific destination

    Value in Experience. Design and Evaluation Framework based on Case Studies of Novel Mobile Services

    Get PDF
    The concept of ‘value’ has received extensive interest in research in the fields of psychology, marketing and, more recently, human-computer interaction (HCI). Gaining insights into users’ personal values can lead to a better understanding of user behaviour. However, the concept of value is not clearly defined, and researchers have produced differing views on the conceptualization of the construct. In the past decade, user experience has received considerable attention in HCI research. Yet the relationship between user experience and value has not gained much attention. The goal of this dissertation is to better understand and articulate the value in user experience. The focus is on novel mobile service solutions, taking into account the viewpoint of different user groups. Achieving an understanding of different user groups will greatly help design successful mobile services for target user populations. The empirical foundation for this dissertation is findings concerning user experience from seven individual case studies conducted in the field with the endusers. Interpretive case studies of novel mobile services in varying usage contexts involved different user groups: children, teenagers, college students and vision and memory -impaired older people. An initial value framework is developed as a synthesis from the literature. By utilizing this framework, the user experience findings obtained are re-examined from the point of view of value through a crosscase analysis and synthesis. Based on this analysis, value parameters from individual mobile service case studies are interpreted and categorized. The initial value framework is complemented by relying on the value parameters identified from the case studies. This work contributes to the field of HCI by showing that user experience and value are closely intertwined. The thesis proposes the concept of “value in experience (ViE)”, which refers to the user’s iterative (subconscious and conscious) interpretation and evaluation of user experience with a service. A value design and evaluation framework is presented and demonstrated by evaluating value in experience from the case studies. Also the designer values are analysed and compared with the value in experience. The framework presents a rich description of value dimensions relevant to specific user groups and mobile service domains in varying usage contexts. Furthermore, value in experience design and evaluation guidelines related to different user groups are proposed. The proposed conceptualization of value in experience offers insights to help understand the dimensions of value, and serves as a lens to guide interpretive analysis of value in experience. The complemented value design and evaluation framework is a tool for identifying and describing the key value dimensions for value in experience evaluation. Furthermore, the framework can support service design processes. The cross-case study findings provide insights into the special characteristics of different user groups and their value priorities in specific service domains. Even though the framework is based on mobile services, its main constructs are expected also to be applicable to other types of digital services

    Toward a more accessible cultural heritage. Experiences, methodologies and tools.

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore