3,013 research outputs found

    An indoor test methodology for solar-powered wireless sensor networks

    Get PDF
    Repeatable and accurate tests are important when designing hardware and algorithms for solar-powered wireless sensor networks (WSNs). Since no two days are exactly alike with regard to energy harvesting, tests must be carried out indoors. Solar simulators are traditionally used in replicating the effects of sunlight indoors - however, solar simulators are expensive, have lighting elements that have short lifetimes, and are usually not designed to carry out the types of tests that hardware and algorithm designers require. As a result, hardware and algorithm designers use tests that are inaccurate and not repeatable (both for others and also for the designers themselves). In this article we propose an indoor test methodology which does not rely on solar simulators. The test methodology has its basis in astronomy and photovoltaic (PV) cell design. We present a generic design for a test apparatus which can be used in carrying out the test methodology. We also present a specific design which we use in implementing an actual test apparatus. We test the efficacy of our test apparatus and, to demonstrate the usefulness of the test methodology, perform experiments akin to those required in projects involving solar-powered WSNs. Results of the said tests and experiments demonstrate that the test methodology is an invaluable tool for hardware and algorithm designers working with solar-powered WSNs

    Energy Cooperation in Battery-Free Wireless Communications with Radio Frequency Energy Harvesting

    Get PDF
    Radio frequency (RF) energy harvesting techniques are becoming a potential method to power battery-free wireless networks. In RF energy harvesting communications, energy cooperation enables shaping and optimization of the energy arrivals at the energy-receiving node to improve the overall system performance. In this paper, we proposed an energy cooperation scheme that enables energy cooperation in battery-free wireless networks with RF harvesting. We first study the battery-free wireless network with RF energy harvesting then state the problem that optimizing the system performance with limited harvesting energy through new energy cooperation protocol. Finally, from the extensive simulation results, our energy cooperation protocol performs better than the original battery-free wireless network solution.特

    Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems

    Get PDF
    For most wireless sensor networks, one common and major bottleneck is the limited battery lifetime. The frequent maintenance efforts associated with battery replacement significantly increase the system operational and logistics cost. Unnoticed power failures on nodes will degrade the system reliability and may lead to system failure. In building management applications, to solve this problem, small energy sources such as indoor light energy are promising to provide long-term power to these distributed wireless sensor nodes. This paper provides comprehensive design considerations for an indoor light energy harvesting system for building management applications. Photovoltaic cells characteristics, energy storage units, power management circuit design and power consumption pattern of the target mote are presented. Maximum power point tracking circuits are proposed which significantly increase the power obtained from the solar cells. The novel fast charge circuit reduces the charging time. A prototype was then successfully built and tested in various indoor light conditions to discover the practical issues of the design. The evaluation results show that the proposed prototype increases the power harvested from the PV cells by 30% and also accelerates the charging rate by 34% in a typical indoor lighting condition. By entirely eliminating the rechargeable battery as energy storage, the proposed system would expect an operational lifetime 10-20 years instead of the current less than 6 months battery lifetim

    Autonomous Sensing Nodes for IoT Applications

    Get PDF
    The present doctoral thesis fits into the energy harvesting framework, presenting the development of low-power nodes compliant with the energy autonomy requirement, and sharing common technologies and architectures, but based on different energy sources and sensing mechanisms. The adopted approach is aimed at evaluating multiple aspects of the system in its entirety (i.e., the energy harvesting mechanism, the choice of the harvester, the study of the sensing process, the selection of the electronic devices for processing, acquisition and measurement, the electronic design, the microcontroller unit (MCU) programming techniques), accounting for very challenging constraints as the low amounts of harvested power (i.e., [μW, mW] range), the careful management of the available energy, the coexistence of sensing and radio transmitting features with ultra-low power requirements. Commercial sensors are mainly used to meet the cost-effectiveness and the large-scale reproducibility requirements, however also customized sensors for a specific application (soil moisture measurement), together with appropriate characterization and reading circuits, are also presented. Two different strategies have been pursued which led to the development of two types of sensor nodes, which are referred to as 'sensor tags' and 'self-sufficient sensor nodes'. The first term refers to completely passive sensor nodes without an on-board battery as storage element and which operate only in the presence of the energy source, provisioning energy from it. In this thesis, an RFID (Radio Frequency Identification) sensor tag for soil moisture monitoring powered by the impinging electromagnetic field is presented. The second term identifies sensor nodes equipped with a battery rechargeable through energy scavenging and working as a secondary reserve in case of absence of the primary energy source. In this thesis, quasi-real-time multi-purpose monitoring LoRaWAN nodes harvesting energy from thermoelectricity, diffused solar light, indoor white light, and artificial colored light are presented

    Energy Harvesting Techniques for Internet of Things (IoT)

    Get PDF
    The rapid growth of the Internet of Things (IoT) has accelerated strong interests in the development of low-power wireless sensors. Today, wireless sensors are integrated within IoT systems to gather information in a reliable and practical manner to monitor processes and control activities in areas such as transportation, energy, civil infrastructure, smart buildings, environment monitoring, healthcare, defense, manufacturing, and production. The long-term and self-sustainable operation of these IoT devices must be considered early on when they are designed and implemented. Traditionally, wireless sensors have often been powered by batteries, which, despite allowing low overall system costs, can negatively impact the lifespan and the performance of the entire network they are used in. Energy Harvesting (EH) technology is a promising environment-friendly solution that extends the lifetime of these sensors, and, in some cases completely replaces the use of battery power. In addition, energy harvesting offers economic and practical advantages through the optimal use of energy, and the provisioning of lower network maintenance costs. We review recent advances in energy harvesting techniques for IoT. We demonstrate two energy harvesting techniques using case studies. Finally, we discuss some future research challenges that must be addressed to enable the large-scale deployment of energy harvesting solutions for IoT environments

    Feasibility, Architecture and Cost Considerations of Using TVWS for Rural Internet Access in 5G

    Get PDF
    The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this ‘two-phase’ problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service provider’s perspective

    Autonomous IoT Monitoring Matching Spectral Artificial Light Manipulation for Horticulture

    Get PDF
    This paper aims at demonstrating the energy self-sufficiency of a LoRaWAN-based sensor node for monitoring environmental parameters exploiting energy harvesting directly coming from the artificial light used in indoor horticulture. A portable polycrystalline silicon module is used to charge a Li-Po battery, employed as the power reserve of a wireless sensor node able to accurately monitor, with a 1-h period, both the physical quantities most relevant for the application, i.e., humidity, temperature and pressure, and the chemical quantities, i.e., O(2) and CO(2) concentrations. To this aim, the node also hosts a power-hungry NDIR sensor. Two programmable light sources were used to emulate the actual lighting conditions of greenhouses, and to prove the effectiveness of the designed autonomous system: a LED-based custom designed solar simulator and a commercial LED light especially thought for plant cultivation purposes in greenhouses. Different lighting conditions used in indoor horticulture to enhance different plant growth phases, obtained as combinations of blue, red, far-red and white spectra, were tested by field tests of the sensor node. The energy self-sufficiency of the system was demonstrated by monitoring the charging/discharging trend of the Li-Po battery. Best results are obtained when white artificial light is mixed with the far-red component, closest to the polycrystalline silicon spectral response peak

    Development of a Self-Sufficient LoRaWAN Sensor Node with Flexible and Glass Dye-Sensitized Solar Cell Modules Harvesting Energy from Diffuse Low-Intensity Solar Radiation

    Get PDF
    This paper aims to demonstrate the viability of energy harvesting for wide area wireless sensing systems based on dye-sensitized solar cells (DSSCs) under diffuse sunlight conditions, proving the feasibility of deploying autonomous sensor nodes even under unfavorable outdoor scenarios, such as during cloudy days, in the proximity of tall buildings, among the trees in a forest and during winter days in general. A flexible thin-film module and a glass thin-film module, both featuring an area smaller than an A4 sheet of paper, were initially characterized in diffuse solar light. Afterward, the protype sensor nodes were tested in a laboratory in two different working conditions, emulating outdoor sunlight in unfavorable lighting and weather to reconstruct a worst-case scenario. A Li-Po battery was employed as a power reserve for a long-range wide area network (LoRaWAN)-based sensor node that transmitted data every 8 h and every hour. To this end, an RFM95x LoRa module was used, while the node energy management was attained by exploiting a nano-power boost charger buck converter integrated circuit conceived for the nano-power harvesting from the light source and the managing of the battery charge and protection. A positive charge balance was demonstrated by monitoring the battery trend along two series of 6 and 9 days, thus allowing us to affirm that the system’s permanent energy self-sufficiency was guaranteed even in the worst-case lighting and weather scenario
    • …
    corecore