58,838 research outputs found

    Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games

    Get PDF
    Many artificial intelligence (AI) applications often require multiple intelligent agents to work in a collaborative effort. Efficient learning for intra-agent communication and coordination is an indispensable step towards general AI. In this paper, we take StarCraft combat game as a case study, where the task is to coordinate multiple agents as a team to defeat their enemies. To maintain a scalable yet effective communication protocol, we introduce a Multiagent Bidirectionally-Coordinated Network (BiCNet ['bIknet]) with a vectorised extension of actor-critic formulation. We show that BiCNet can handle different types of combats with arbitrary numbers of AI agents for both sides. Our analysis demonstrates that without any supervisions such as human demonstrations or labelled data, BiCNet could learn various types of advanced coordination strategies that have been commonly used by experienced game players. In our experiments, we evaluate our approach against multiple baselines under different scenarios; it shows state-of-the-art performance, and possesses potential values for large-scale real-world applications.Comment: 10 pages, 10 figures. Previously as title: "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games", Mar 201

    Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning

    Full text link
    Deep Learning has recently become hugely popular in machine learning, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level DP applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).Comment: ACM CCS'17, 16 pages, 18 figure

    Near-Optimal Adversarial Policy Switching for Decentralized Asynchronous Multi-Agent Systems

    Full text link
    A key challenge in multi-robot and multi-agent systems is generating solutions that are robust to other self-interested or even adversarial parties who actively try to prevent the agents from achieving their goals. The practicality of existing works addressing this challenge is limited to only small-scale synchronous decision-making scenarios or a single agent planning its best response against a single adversary with fixed, procedurally characterized strategies. In contrast this paper considers a more realistic class of problems where a team of asynchronous agents with limited observation and communication capabilities need to compete against multiple strategic adversaries with changing strategies. This problem necessitates agents that can coordinate to detect changes in adversary strategies and plan the best response accordingly. Our approach first optimizes a set of stratagems that represent these best responses. These optimized stratagems are then integrated into a unified policy that can detect and respond when the adversaries change their strategies. The near-optimality of the proposed framework is established theoretically as well as demonstrated empirically in simulation and hardware

    Analytic frameworks for assessing dialogic argumentation in online learning environments

    Get PDF
    Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation

    Learning Output Kernels for Multi-Task Problems

    Full text link
    Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel learning (OKL), we introduce a method that jointly learns multiple functions and a low-rank multi-task kernel by solving a non-convex regularization problem. Optimization is carried out via a block coordinate descent strategy, where each subproblem is solved using suitable conjugate gradient (CG) type iterative methods for linear operator equations. The effectiveness of the proposed approach is demonstrated on pharmacological and collaborative filtering data

    Large High Resolution Displays for Co-Located Collaborative Intelligence Analysis

    Get PDF
    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the spatial strategies of users partitioned by tool type used (document- or entity-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with the display (integrated or independent workspaces). Next, we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we recommend design guidelines for building co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays
    • …
    corecore