41,845 research outputs found

    Incremental Verification of Timing Constraints for Real-Time Systems

    Get PDF
    Testing constraints for real-time systems are usually verified through the satisfiability of propositional formulae. In this paper, we propose an alternative where the verification of timing constraints can be done by counting the number of truth assignments instead of boolean satisfiability. This number can also tell us how “far away” is a given specification from satisfying its safety assertion. Furthermore, specifications and safety assertions are often modified in an incremental fashion, where problematic bugs are fixed one at a time. To support this development, we propose an incremental algorithm for counting satisfiability. Our proposed incremental algorithm is optimal as no unnecessary nodes are created during each counting. This works for the class of path RTL. To illustrate this application, we show how incremental satisfiability counting can be applied to a well-known rail-road crossing example, particularly when its specification is still being refined.Singapore-MIT Alliance (SMA

    An empirical learning-based validation procedure for simulation workflow

    Full text link
    Simulation workflow is a top-level model for the design and control of simulation process. It connects multiple simulation components with time and interaction restrictions to form a complete simulation system. Before the construction and evaluation of the component models, the validation of upper-layer simulation workflow is of the most importance in a simulation system. However, the methods especially for validating simulation workflow is very limit. Many of the existing validation techniques are domain-dependent with cumbersome questionnaire design and expert scoring. Therefore, this paper present an empirical learning-based validation procedure to implement a semi-automated evaluation for simulation workflow. First, representative features of general simulation workflow and their relations with validation indices are proposed. The calculation process of workflow credibility based on Analytic Hierarchy Process (AHP) is then introduced. In order to make full use of the historical data and implement more efficient validation, four learning algorithms, including back propagation neural network (BPNN), extreme learning machine (ELM), evolving new-neuron (eNFN) and fast incremental gaussian mixture model (FIGMN), are introduced for constructing the empirical relation between the workflow credibility and its features. A case study on a landing-process simulation workflow is established to test the feasibility of the proposed procedure. The experimental results also provide some useful overview of the state-of-the-art learning algorithms on the credibility evaluation of simulation models

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape

    Bounded Verification with On-the-Fly Discrepancy Computation

    Get PDF
    Simulation-based verification algorithms can provide formal safety guarantees for nonlinear and hybrid systems. The previous algorithms rely on user provided model annotations called discrepancy function, which are crucial for computing reachtubes from simulations. In this paper, we eliminate this requirement by presenting an algorithm for computing piece-wise exponential discrepancy functions. The algorithm relies on computing local convergence or divergence rates of trajectories along a simulation using a coarse over-approximation of the reach set and bounding the maximal eigenvalue of the Jacobian over this over-approximation. The resulting discrepancy function preserves the soundness and the relative completeness of the verification algorithm. We also provide a coordinate transformation method to improve the local estimates for the convergence or divergence rates in practical examples. We extend the method to get the input-to-state discrepancy of nonlinear dynamical systems which can be used for compositional analysis. Our experiments show that the approach is effective in terms of running time for several benchmark problems, scales reasonably to larger dimensional systems, and compares favorably with respect to available tools for nonlinear models.Comment: 24 page

    The Parma Polyhedra Library: Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems

    Get PDF
    Since its inception as a student project in 2001, initially just for the handling (as the name implies) of convex polyhedra, the Parma Polyhedra Library has been continuously improved and extended by joining scrupulous research on the theoretical foundations of (possibly non-convex) numerical abstractions to a total adherence to the best available practices in software development. Even though it is still not fully mature and functionally complete, the Parma Polyhedra Library already offers a combination of functionality, reliability, usability and performance that is not matched by similar, freely available libraries. In this paper, we present the main features of the current version of the library, emphasizing those that distinguish it from other similar libraries and those that are important for applications in the field of analysis and verification of hardware and software systems.Comment: 38 pages, 2 figures, 3 listings, 3 table
    • …
    corecore