1,020 research outputs found

    Incremental Unsupervised Domain-Adversarial Training of Neural Networks

    Get PDF
    In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples. When this is not the case, the behavior of the learned model is unpredictable and becomes dependent upon the degree of similarity between the distribution of the training set and the distribution of the test set. One of the research topics that investigates this scenario is referred to as domain adaptation. Deep neural networks brought dramatic advances in pattern recognition and that is why there have been many attempts to provide good domain adaptation algorithms for these models. Here we take a different avenue and approach the problem from an incremental point of view, where the model is adapted to the new domain iteratively. We make use of an existing unsupervised domain-adaptation algorithm to identify the target samples on which there is greater confidence about their true label. The output of the model is analyzed in different ways to determine the candidate samples. The selected set is then added to the source training set by considering the labels provided by the network as ground truth, and the process is repeated until all target samples are labelled. Our results report a clear improvement with respect to the non-incremental case in several datasets, also outperforming other state-of-the-art domain adaptation algorithms.Comment: 26 pages, 7 figure

    A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts

    Full text link
    Machine learning methods strive to acquire a robust model during training that can generalize well to test samples, even under distribution shifts. However, these methods often suffer from a performance drop due to unknown test distributions. Test-time adaptation (TTA), an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions. Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference. In this survey, we divide TTA into several distinct categories, namely, test-time (source-free) domain adaptation, test-time batch adaptation, online test-time adaptation, and test-time prior adaptation. For each category, we provide a comprehensive taxonomy of advanced algorithms, followed by a discussion of different learning scenarios. Furthermore, we analyze relevant applications of TTA and discuss open challenges and promising areas for future research. A comprehensive list of TTA methods can be found at \url{https://github.com/tim-learn/awesome-test-time-adaptation}.Comment: Discussions, comments, and questions are all welcomed in \url{https://github.com/tim-learn/awesome-test-time-adaptation
    • …
    corecore