144 research outputs found

    Automated Verification of Practical Garbage Collectors

    Full text link
    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness

    Formal Derivation of Concurrent Garbage Collectors

    Get PDF
    Concurrent garbage collectors are notoriously difficult to implement correctly. Previous approaches to the issue of producing correct collectors have mainly been based on posit-and-prove verification or on the application of domain-specific templates and transformations. We show how to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal specification, emphasizing the application of domain-independent design theories and transformations. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to account for the dynamics of concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the Proceedings of MPC 201

    Exploration of Dynamic Memory

    Get PDF
    Since the advent of the Java programming language and the development of real-time garbage collection, Java has become an option for implementing real-time applications. The memory management choices provided by real-time garbage collection allow for real-time eJava developers to spend more of their time implementing real-time solutions. Unfortunately, the real-time community is not convinced that real-time garbage collection works in managing memory for Java applications deployed in a real-time context. Consequently, the Real-Time for Java Expert Group formulated the Real-Time Speciļ¬cation for Java (RTSJ) standards to make Java a real-time programming language. In lieu of garbage collection, the RTSJ proposed a new memory model called scopes, and a new type of thread called NoHeapRealTimeThread (NHRT), which takes advantage of scopes. While scopes and NHRTs promise predictable allocation and deallocation behaviors, no asymptotic studies have been conducted to investigate the costs associated with these technologies. To understand the costs associated with using these technologies to manage memory, computations and analyses of time and space overheads associated with scopes and NHRTs are presented. These results provide a framework for comparing the RTSJā€™s memory management model with real-time garbage collection. Another facet of this research concerns the optimization of novel approaches to garbage collection on multiprocessor systems. Such approaches yield features that are suitable for real-time systems. Although multiprocessor, concurrent garbage collection is not the same as real-time garbage collection, advancements in multiprocessor concurrent garbage collection have demonstrated the feasibility of building low latency multiprocessor real-time garbage collectors. In the nineteen-sixties, only three garbage collection schemes were available, namely reference counting garbage collection, mark-sweep garbage collection, and copying garbage collection. These classical approaches gave new insight into the discipline of memory management and inspired researchers to develop new, more elaborate memory-management techniques. Those insights resulted in a plethora of automatic memory management algorithms and techniques, and a lack of uniformity in the language used to reason about garbage collection. To bring a sense of uniformity to the language used to reason about garbage collection technologies, a taxonomy for comparing garbage collection technologies is presented

    Beltway: Getting Around Garbage Collection Gridlock

    Get PDF
    We present the design and implementation of a new garbage collection framework that significantly generalizes existing copying collectors. The Beltway framework exploits and separates object age and incrementality. It groups objects in one or more increments on queues called belts, collects belts independently, and collects increments on a belt in first-in-first-out order. We show that Beltway configurations, selected by command line options, act and perform the same as semi-space, generational, and older-first collectors, and encompass all previous copying collectors of which we are aware. The increasing reliance on garbage collected languages such as Java requires that the collector perform well. We show that the generality of Beltway enables us to design and implement new collectors that are robust to variations in heap size and improve total execution time over the best generational copying collectors of which we are aware by up to 40%, and on average by 5 to 10%, for small to moderate heap sizes. New garbage collection algorithms are rare, and yet we define not just one, but a new family of collectors that subsumes previous work. This generality enables us to explore a larger design space and build better collectors

    High-level real-time programming in Java

    Full text link
    Real-time systems have reached a level of complexity beyond the scaling capability of the low-level or restricted languages traditionally used for real-time programming. While Metronome garbage collection has made it practical to use Java to implement real-time systems, many challenges remain for the construction of complex real-time systems, some specic to the use of Java and others simply due to the change in scale of such systems. The goal of our research is the creation of a comprehensive Java-based programming environment and methodology for the creation of complex real-time systems. Our goals include construction of a provably correct real-time garbage collec-tor capable of providing worst case latencies of 100 s, capa-ble of scaling from sensor nodes up to large multiprocessors; specialized programming constructs that retain the safety and simplicity of Java, and yet provide sub-microsecond la-tencies; the extension of Java's \write once, run anywhere" principle from functional correctness to timing behavior; on-line analysis and visualization that aids in the understanding of complex behaviors; and a principled probabilistic analy-sis methodology for bounding the behavior of the resulting systems. While much remains to be done, this paper describes the progress we have made towards these goals

    Garbage Collection for Java Distributed Objects

    Get PDF
    We present a distributed garbage collection algorithm for Java distributed objects using the object model provided by the Java Support for Distributed Objects (JSDA) object model and using weak references in Java. The algorithm can also be used for any other Java based distributed object models that use the stub-skeleton paradigm. Furthermore, the solution could also be applied to any language that supports weak references as a mean of interaction with the local garbage collector. We also give a formal definition and a proof of correctness for the proposed algorithm

    Static Determination of Allocation Rates to Support Real-Time Garbage Collection

    Get PDF
    While it is generally accepted that garbage-collected languages offer advantages over languages in which objects must be explicitly deallocated, real-time developers are leery of the adverse effects a garbage collector might have on real-time performance. Semiautomatic approaches based on regions have been proposed, but incorrect usage could cause unbounded storage leaks or program failure. Moreover, correct usage cannot be guaranteed at compile-time. Recently, real-time garbage collectors have been developed that provide a guaranteed fraction of the CPU to the application, and the correct operation of those collectors has been proven, subject only to the specification of certain statistics related to the type and rate of objects allocated by the application. However, unless those statistics are provided or estimated appropriately, the collector may fail to collect dead storage at a rate sufficient to pace the applicationā€™s need. Overspecification of those statistics is safe, but leaves the application with less than its possible share of the CPU, which may prevent the application from meeting its deadlines. In this thesis, we present a dynamic and static analysis of one such statistic, namely the real-time applicationā€™s memory allocation rate. The dynamic analysis highlights the variability of a programā€™s allocation rate. It also serves to quantify the conservatism of the statically computed upper bound. The static analysis is based on a data flow framework that requires interprocedural evaluation. We present the framework and results from analyzing some Java benchmarks from the jvm98 suite. Our work is a necessary step toward making real-time garbage collectors attractive to the hard-real-time community. By guaranteeing a bound on statistics provided to a real-time collector, we can guarantee the operation of the collector for a given application
    • ā€¦
    corecore