3,054 research outputs found

    Extracting and Cleaning RDF Data

    Get PDF
    The RDF data model has become a prevalent format to represent heterogeneous data because of its versatility. The capability of dismantling information from its native formats and representing it in triple format offers a simple yet powerful way of modelling data that is obtained from multiple sources. In addition, the triple format and schema constraints of the RDF model make the RDF data easy to process as labeled, directed graphs. This graph representation of RDF data supports higher-level analytics by enabling querying using different techniques and querying languages, e.g., SPARQL. Anlaytics that require structured data are supported by transforming the graph data on-the-fly to populate the target schema that is needed for downstream analysis. These target schemas are defined by downstream applications according to their information need. The flexibility of RDF data brings two main challenges. First, the extraction of RDF data is a complex task that may involve domain expertise about the information required to be extracted for different applications. Another significant aspect of analyzing RDF data is its quality, which depends on multiple factors including the reliability of data sources and the accuracy of the extraction systems. The quality of the analysis depends mainly on the quality of the underlying data. Therefore, evaluating and improving the quality of RDF data has a direct effect on the correctness of downstream analytics. This work presents multiple approaches related to the extraction and quality evaluation of RDF data. To cope with the large amounts of data that needs to be extracted, we present DSTLR, a scalable framework to extract RDF triples from semi-structured and unstructured data sources. For rare entities that fall on the long tail of information, there may not be enough signals to support high-confidence extraction. Towards this problem, we present an approach to estimate property values for long tail entities. We also present multiple algorithms and approaches that focus on the quality of RDF data. These include discovering quality constraints from RDF data, and utilizing machine learning techniques to repair errors in RDF data

    Clustering Approaches for Multi-source Entity Resolution

    Get PDF
    Entity Resolution (ER) or deduplication aims at identifying entities, such as specific customer or product descriptions, in one or several data sources that refer to the same real-world entity. ER is of key importance for improving data quality and has a crucial role in data integration and querying. The previous generation of ER approaches focus on integrating records from two relational databases or performing deduplication within a single database. Nevertheless, in the era of Big Data the number of available data sources is increasing rapidly. Therefore, large-scale data mining or querying systems need to integrate data obtained from numerous sources. For example, in online digital libraries or E-Shops, publications or products are incorporated from a large number of archives or suppliers across the world or within a specified region or country to provide a unified view for the user. This process requires data consolidation from numerous heterogeneous data sources, which are mostly evolving. By raising the number of sources, data heterogeneity and velocity as well as the variance in data quality is increased. Therefore, multi-source ER, i.e. finding matching entities in an arbitrary number of sources, is a challenging task. Previous efforts for matching and clustering entities between multiple sources (> 2) mostly treated all sources as a single source. This approach excludes utilizing metadata or provenance information for enhancing the integration quality and leads up to poor results due to ignorance of the discrepancy between quality of sources. The conventional ER pipeline consists of blocking, pair-wise matching of entities, and classification. In order to meet the new needs and requirements, holistic clustering approaches that are capable of scaling to many data sources are needed. The holistic clustering-based ER should further overcome the restriction of pairwise linking of entities by making the process capable of grouping entities from multiple sources into clusters. The clustering step aims at removing false links while adding missing true links across sources. Additionally, incremental clustering and repairing approaches need to be developed to cope with the ever-increasing number of sources and new incoming entities. To this end, we developed novel clustering and repairing schemes for multi-source entity resolution. The approaches are capable of grouping entities from multiple clean (duplicate-free) sources, as well as handling data from an arbitrary combination of clean and dirty sources. The multi-source clustering schemes exclusively developed for multi-source ER can obtain superior results compared to general purpose clustering algorithms. Additionally, we developed incremental clustering and repairing methods in order to handle the evolving sources. The proposed incremental approaches are capable of incorporating new sources as well as new entities from existing sources. The more sophisticated approach is able to repair previously determined clusters, and consequently yields improved quality and a reduced dependency on the insert order of the new entities. To ensure scalability, the parallel variation of all approaches are implemented on top of the Apache Flink framework which is a distributed processing engine. The proposed methods have been integrated in a new end-to-end ER tool named FAMER (FAst Multi-source Entity Resolution system). The FAMER framework is comprised of Linking and Clustering components encompassing both batch and incremental ER functionalities. The output of Linking part is recorded as a similarity graph where each vertex represents an entity and each edge maintains the similarity relationship between two entities. Such a similarity graph is the input of the Clustering component. The comprehensive comparative evaluations overall show that the proposed clustering and repairing approaches for both batch and incremental ER achieve high quality while maintaining the scalability

    Online Data Cleaning

    Get PDF
    Data-centric applications have never been more ubiquitous in our lives, e.g., search engines, route navigation and social media. This has brought along a new age where digital data is at the core of many decisions we make as individuals, e.g., looking for the most scenic route to plan a road trip, or as professionals, e.g., analysing customers’ transactions to predict the best time to restock different products. However, the surge in data generation has also led to creating massive amounts of dirty data, i.e., inaccurate or redundant data. Using dirty data to inform business decisions comes with dire consequences, for instance, an IBM report estimates that dirty data costs the U.S. $3.1 trillion a year. Dirty data is the product of many factors which include data entry errors and integration of several data sources. Data integration of multiple sources is especially prone to producing dirty data. For instance, while individual sources may not have redundant data, they often carry redundant data across each other. Furthermore, different data sources may obey different business rules (sometimes not even known) which makes it challenging to reconcile the integrated data. Even if the data is clean at the time of the integration, data updates would compromise its quality over time. There is a wide spectrum of errors that can be found in the data, e,g, duplicate records, missing values, obsolete data, etc. To address these problems, several data cleaning efforts have been proposed, e.g., record linkage to identify duplicate records, data fusion to fuse duplicate data items into a single representation and enforcing integrity constraints on the data. However, most existing efforts make two key assumptions: (1) Data cleaning is done in one shot; and (2) The data is available in its entirety. Those two assumptions do not hold in our age where data is highly volatile and integrated from several sources. This calls for a paradigm shift in approaching data cleaning: it has to be made iterative where data comes in chunks and not all at once. Consequently, cleaning the data should not be repeated from scratch whenever the data changes, but instead, should be done only for data items affected by the updates. Moreover, the repair should be computed effciently to support applications where cleaning is performed online (e.g. query time data cleaning). In this dissertation, we present several proposals to realize this paradigm for two major types of data errors: duplicates and integrity constraint violations. We frst present a framework that supports online record linkage and fusion over Web databases. Our system processes queries posted to Web databases. Query results are deduplicated, fused and then stored in a cache for future reference. The cache is updated iteratively with new query results. This effort makes it possible to perform record linkage and fusion effciently, but also effectively, i.e., the cache contains data items seen in previous queries which are jointly cleaned with incoming query results. To address integrity constraints violations, we propose a novel way to approach Functional Dependency repairs, develop a new class of repairs and then demonstrate it is superior to existing efforts, in runtime and accuracy. We then show how our framework can be easily tuned to work iteratively to support online applications. We implement a proof-ofconcept query answering system to demonstrate the iterative capability of our system

    Rerepresenting and Restructuring Domain Theories: A Constructive Induction Approach

    Full text link
    Theory revision integrates inductive learning and background knowledge by combining training examples with a coarse domain theory to produce a more accurate theory. There are two challenges that theory revision and other theory-guided systems face. First, a representation language appropriate for the initial theory may be inappropriate for an improved theory. While the original representation may concisely express the initial theory, a more accurate theory forced to use that same representation may be bulky, cumbersome, and difficult to reach. Second, a theory structure suitable for a coarse domain theory may be insufficient for a fine-tuned theory. Systems that produce only small, local changes to a theory have limited value for accomplishing complex structural alterations that may be required. Consequently, advanced theory-guided learning systems require flexible representation and flexible structure. An analysis of various theory revision systems and theory-guided learning systems reveals specific strengths and weaknesses in terms of these two desired properties. Designed to capture the underlying qualities of each system, a new system uses theory-guided constructive induction. Experiments in three domains show improvement over previous theory-guided systems. This leads to a study of the behavior, limitations, and potential of theory-guided constructive induction.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl
    • …
    corecore