1,596 research outputs found

    Vitis: A Gossip-based Hybrid Overlay for Internet-scale Publish/Subscribe

    Get PDF
    Peer-to-peer overlay networks are attractive solutions for building Internet-scale publish/subscribe systems. However, scalability comes with a cost: a message published on a certain topic often needs to traverse a large number of uninterested (unsubscribed) nodes before reaching all its subscribers. This might sharply increase resource consumption for such relay nodes (in terms of bandwidth transmission cost, CPU, etc) and could ultimately lead to rapid deterioration of the system’s performance once the relay nodes start dropping the messages or choose to permanently abandon the system. In this paper, we introduce Vitis, a gossip-based publish/subscribe system that significantly decreases the number of relay messages, and scales to an unbounded number of nodes and topics. This is achieved by the novel approach of enabling rendezvous routing on unstructured overlays. We construct a hybrid system by injecting structure into an otherwise unstructured network. The resulting structure resembles a navigable small-world network, which spans along clusters of nodes that have similar subscriptions. The properties of such an overlay make it an ideal platform for efficient data dissemination in large-scale systems. We perform extensive simulations and evaluate Vitis by comparing its performance against two base-line publish/subscribe systems: one that is oblivious to node subscriptions, and another that exploits the subscription similarities. Our measurements show that Vitis significantly outperforms the base-line solutions on various subscription and churn scenarios, from both synthetic models and real-world traces

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    On the Cost of Participating in a Peer-to-Peer Network

    Full text link
    In this paper, we model the cost incurred by each peer participating in a peer-to-peer network. Such a cost model allows to gauge potential disincentives for peers to collaborate, and provides a measure of the ``total cost'' of a network, which is a possible benchmark to distinguish between proposals. We characterize the cost imposed on a node as a function of the experienced load and the node connectivity, and show how our model applies to a few proposed routing geometries for distributed hash tables (DHTs). We further outline a number of open questions this research has raised.Comment: 17 pages, 4 figures. Short version to be published in the Proceedings of the Third International Workshop on Peer-to-Peer Systems (IPTPS'04). San Diego, CA. February 200

    A HOLISTIC REDUNDANCY- AND INCENTIVE-BASED FRAMEWORK TO IMPROVE CONTENT AVAILABILITY IN PEER-TO-PEER NETWORKS

    Get PDF
    Peer-to-Peer (P2P) technology has emerged as an important alternative to the traditional client-server communication paradigm to build large-scale distributed systems. P2P enables the creation, dissemination and access to information at low cost and without the need of dedicated coordinating entities. However, existing P2P systems fail to provide high-levels of content availability, which limit their applicability and adoption. This dissertation takes a holistic approach to device mechanisms to improve content availability in large-scale P2P systems. Content availability in P2P can be impacted by hardware failures and churn. Hardware failures, in the form of disk or node failures, render information inaccessible. Churn, an inherent property of P2P, is the collective effect of the users’ uncoordinated behavior, which occurs when a large percentage of nodes join and leave frequently. Such a behavior reduces content availability significantly. Mitigating the combined effect of hardware failures and churn on content availability in P2P requires new and innovative solutions that go beyond those applied in existing distributed systems. To addresses this challenge, the thesis proposes two complementary, low cost mechanisms, whereby nodes self-organize to overcome failures and improve content availability. The first mechanism is a low complexity and highly flexible hybrid redundancy scheme, referred to as Proactive Repair (PR). The second mechanism is an incentive-based scheme that promotes cooperation and enforces fair exchange of resources among peers. These mechanisms provide the basis for the development of distributed self-organizing algorithms to automate PR and, through incentives, maximize their effectiveness in realistic P2P environments. Our proposed solution is evaluated using a combination of analytical and experimental methods. The analytical models are developed to determine the availability and repair cost properties of PR. The results indicate that PR’s repair cost outperforms other redundancy schemes. The experimental analysis was carried out using simulation and the development of a testbed. The simulation results confirm that PR improves content availability in P2P. The proposed mechanisms are implemented and tested using a DHT-based P2P application environment. The experimental results indicate that the incentive-based mechanism can promote fair exchange of resources and limits the impact of uncooperative behaviors such as “free-riding”

    Socially-Aware Distributed Hash Tables for Decentralized Online Social Networks

    Full text link
    Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.Comment: 10 pages, p2p 2015 conferenc

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Scalable Peer-to-Peer Streaming for Live Entertainment Content

    Get PDF
    We present a system for streaming live entertainment content over the Internet originating from a single source to a scalable number of consumers without resorting to centralized or provider-provisioned resources. The system creates a peer-to-peer overlay network, which attempts to optimize use of existing capacity to ensure quality of service, delivering low startup delay and lag in playout of the live content. There are three main aspects of our solution: first, a swarming mechanism that constructs an overlay topology for minimizing propagation delays from the source to end consumers; second, a distributed overlay anycast system that uses a location-based search algorithm for peers to quickly find the closest peers in a given stream; and finally, a novel incentive mechanism that encourages peers to donate capacity even when the user is not actively consuming content
    corecore