5,210 research outputs found

    An incentive scheme for non-cooperative social networks under the Independent Cascade Model

    Get PDF
    Session 20: Intelligent e-Technology IIn this paper we analyze influence maximization for noncooperative social networks under the Independent Cascade Model. We propose a model of noncooperative nodes and prove some interesting properties of this model. Based on this, we further develop a game-theoretic model to characterize the behavior of noncooperative nodes, and design a Vickrey-Clarke-Groves-like scheme to incentivise cooperation. An advertiser can resolve the negative effect of noncooperation with our proposed solution. Evaluation on large social networks demonstrates the importance of cooperation and the effectiveness of our proposed incentive scheme in maximizing influence. We also discuss the budget allocation between seed nodes activation and incentives to non-seed nodes.published_or_final_versio

    Coreness of Cooperative Games with Truncated Submodular Profit Functions

    Full text link
    Coreness represents solution concepts related to core in cooperative games, which captures the stability of players. Motivated by the scale effect in social networks, economics and other scenario, we study the coreness of cooperative game with truncated submodular profit functions. Specifically, the profit function f(⋅)f(\cdot) is defined by a truncation of a submodular function σ(⋅)\sigma(\cdot): f(⋅)=σ(⋅)f(\cdot)=\sigma(\cdot) if σ(⋅)≥η\sigma(\cdot)\geq\eta and f(⋅)=0f(\cdot)=0 otherwise, where η\eta is a given threshold. In this paper, we study the core and three core-related concepts of truncated submodular profit cooperative game. We first prove that whether core is empty can be decided in polynomial time and an allocation in core also can be found in polynomial time when core is not empty. When core is empty, we show hardness results and approximation algorithms for computing other core-related concepts including relative least-core value, absolute least-core value and least average dissatisfaction value

    Energy-Aware Competitive Power Allocation for Heterogeneous Networks Under QoS Constraints

    Get PDF
    This work proposes a distributed power allocation scheme for maximizing energy efficiency in the uplink of orthogonal frequency-division multiple access (OFDMA)-based heterogeneous networks (HetNets). The user equipment (UEs) in the network are modeled as rational agents that engage in a non-cooperative game where each UE allocates its available transmit power over the set of assigned subcarriers so as to maximize its individual utility (defined as the user's throughput per Watt of transmit power) subject to minimum-rate constraints. In this framework, the relevant solution concept is that of Debreu equilibrium, a generalization of Nash equilibrium which accounts for the case where an agent's set of possible actions depends on the actions of its opponents. Since the problem at hand might not be feasible, Debreu equilibria do not always exist. However, using techniques from fractional programming, we provide a characterization of equilibrial power allocation profiles when they do exist. In particular, Debreu equilibria are found to be the fixed points of a water-filling best response operator whose water level is a function of minimum rate constraints and circuit power. Moreover, we also describe a set of sufficient conditions for the existence and uniqueness of Debreu equilibria exploiting the contraction properties of the best response operator. This analysis provides the necessary tools to derive a power allocation scheme that steers the network to equilibrium in an iterative and distributed manner without the need for any centralized processing. Numerical simulations are then used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters.Comment: 37 pages, 12 figures, to appear IEEE Trans. Wireless Commu

    Data Dissemination And Information Diffusion In Social Networks

    Get PDF
    Data dissemination problem is a challenging issue in social networks, especially in mobile social networks, which grows rapidly in recent years worldwide with a significant increasing number of hand-on mobile devices such as smart phones and pads. Short-range radio communications equipped in mobile devices enable mobile users to access their interested contents not only from access points of Internet but also from other mobile users. Through proper data dissemination among mobile users, the bandwidth of the short-range communications can be better utilized and alleviate the stress on the bandwidth of the cellular networks. In this dissertation proposal, data dissemination problem in mobile social networks is studied. Before data dissemination emerges in the research of mobile social networks, routing protocol of finding efficient routing path in mobile social networks was the focus, which later became the pavement for the study of the efficient data dissemination. Data dissemination priorities on packet dissemination from multiple sources to multiple destinations while routing protocol simply focus on finding routing path between two ends in the networks. The first works in the literature of data dissemination problem were based on the modification and improvement of routing protocols in mobile social networks. Therefore, we first studied and proposed a prediction-based routing protocol in delay tolerant networks. Delay tolerant network appears earlier than mobile social networks. With respect to delay tolerant networks, mobile social networks also consider social patterns as well as mobility patterns. In our work, we simply come up with the prediction-based routing protocol through analysis of user mobility patterns. We can also apply our proposed protocol in mobile social networks. Secondly, in literature, efficient data dissemination schemes are proposed to improve the data dissemination ratio and with reasonable overhead in the networks. However, the overhead may be not well controlled in the existing works. A social-aware data dissemination scheme is proposed in this dissertation proposal to study efficient data dissemination problem with controlled overhead in mobile social networks. The data dissemination scheme is based on the study on both mobility patterns and social patterns of mobile social networks. Thirdly, in real world cases, an efficient data dissemination in mobile social networks can never be realized if mobile users are selfish, which is true unfortunately in fact. Therefore, how to strengthen nodal cooperation for data dissemination is studied and a credit-based incentive data dissemination protocol is also proposed in this dissertation. Data dissemination problem was primarily researched on mobile social networks. When consider large social networks like online social networks, another similar problem was researched, namely, information diffusion problem. One specific problem is influence maximization problem in online social networks, which maximize the result of information diffusion process. In this dissertation proposal, we proposed a new information diffusion model, namely, sustaining cascading (SC) model to study the influence maximization problem and based on the SC model, we further plan our research work on the information diffusion problem aiming at minimizing the influence diffusion time with subject to an estimated influence coverage

    Considering Human Aspects on Strategies for Designing and Managing Distributed Human Computation

    Full text link
    A human computation system can be viewed as a distributed system in which the processors are humans, called workers. Such systems harness the cognitive power of a group of workers connected to the Internet to execute relatively simple tasks, whose solutions, once grouped, solve a problem that systems equipped with only machines could not solve satisfactorily. Examples of such systems are Amazon Mechanical Turk and the Zooniverse platform. A human computation application comprises a group of tasks, each of them can be performed by one worker. Tasks might have dependencies among each other. In this study, we propose a theoretical framework to analyze such type of application from a distributed systems point of view. Our framework is established on three dimensions that represent different perspectives in which human computation applications can be approached: quality-of-service requirements, design and management strategies, and human aspects. By using this framework, we review human computation in the perspective of programmers seeking to improve the design of human computation applications and managers seeking to increase the effectiveness of human computation infrastructures in running such applications. In doing so, besides integrating and organizing what has been done in this direction, we also put into perspective the fact that the human aspects of the workers in such systems introduce new challenges in terms of, for example, task assignment, dependency management, and fault prevention and tolerance. We discuss how they are related to distributed systems and other areas of knowledge.Comment: 3 figures, 1 tabl

    Equilibrium in Labor Markets with Few Firms

    Full text link
    We study competition between firms in labor markets, following a combinatorial model suggested by Kelso and Crawford [1982]. In this model, each firm is trying to recruit workers by offering a higher salary than its competitors, and its production function defines the utility generated from any actual set of recruited workers. We define two natural classes of production functions for firms, where the first one is based on additive capacities (weights), and the second on the influence of workers in a social network. We then analyze the existence of pure subgame perfect equilibrium (PSPE) in the labor market and its properties. While neither class holds the gross substitutes condition, we show that in both classes the existence of PSPE is guaranteed under certain restrictions, and in particular when there are only two competing firms. As a corollary, there exists a Walrasian equilibrium in a corresponding combinatorial auction, where bidders' valuation functions belong to these classes. While a PSPE may not exist when there are more than two firms, we perform an empirical study of equilibrium outcomes for the case of weight-based games with three firms, which extend our analytical results. We then show that stability can in some cases be extended to coalitional stability, and study the distribution of profit between firms and their workers in weight-based games
    • …
    corecore