3,601 research outputs found

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Fuzzy clustering in cell formation with multiple attributes

    Get PDF
    AbstractAn approach based on fuzzy clustering and aggregation operators is proposed to design cell formation involving multiple criteria or multiple attributes. The three most basic attributes in cell formation, namely, number of machines required, processing time, and common tools required on machines, are considered. The results are compared with the single attribute results of Chu and Hayya (1991) [27]

    Application of Artificial Intelligence (AI) methods for designing and analysis of Reconfigurable Cellular Manufacturing System (RCMS)

    Get PDF
    This work focuses on the design and control of a novel hybrId manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular Manufacturing System (CMS) and Reconfigurable Manufacturing System (RMS). In addition to inheriting desirable properties from CMS and RMS, RCMS provides additional benefits including flexibility and the ability to respond to changing products, product mix and market conditions during its useful life, avoiding premature obsolescence of the manufacturing system. The emphasis of this research is the formation of Reconfigurable Manufacturing Cell (RMC) which is the dynamic and logical clustering of some manufacturing resources, driven by specific customer orders, aiming at optimally fulfilling customers' orders along with other RMCs in the RCMS

    Robust fuzzyclustering for object recognition and classification of relational data

    Get PDF
    Prototype based fuzzy clustering algorithms have unique ability to partition the data while detecting multiple clusters simultaneously. However since real data is often contaminated with noise, the clustering methods need to be made robust to be useful in practice. This dissertation focuses on robust detection of multiple clusters from noisy range images for object recognition. Dave\u27s noise clustering (NC) method has been shown to make prototype-based fuzzy clustering techniques robust. In this work, NC is generalized and the new NC membership is shown to be a product of fuzzy c-means (FCM) membership and robust M-estimator weight (or possibilistic membership). Thus the generalized NC approach is shown to have the partitioning ability of FCM and robustness of M-estimators. Since the NC (or FCM) algorithms are based on fixed-point iteration technique, they suffer from the problem of initializations. To overcome this problem, the sampling based robust LMS algorithm is considered by extending it to fuzzy c-LMS algorithm for detecting multiple clusters. The concept of repeated evidence has been incorporated to increase the speed of the new approach. The main problem with the LMS approach is the need for ordering the distance data. To eliminate this problem, a novel sampling based robust algorithm is proposed following the NC principle, called the NLS method, that directly searches for clusters in the maximum density region of the range data without requiring the specification of number of clusters. The NC concept is also introduced to several fuzzy methods for robust classification of relational data for pattern recognition. This is also extended to non-Euclidean relational data. The resulting algorithms are used for object recognition from range images as well as for identification of bottleneck parts while creating desegregated cells of machine/ components in cellular manufacturing and group technology (GT) applications

    Part grouping for efficient process planning

    Get PDF
    A framework to provide automated part grouping has been investigated in order to overcome the limitations found in existing part grouping techniques. The work is targeted at: exploration of criteria for feature-based part grouping to make the process planning activity efficient; determination of the optimal number of part families in the part grouping process; development of an experimental hybrid process planning system (HYCAPP); investigation of the effects of improved part grouping on manufacturing cell design. The research work has explored the creation of a feature-based component data model and manufacturing system capability data model, and checked the limitations inherent in existing part grouping techniques i.e. part grouping: around methods; based on part geometry; based on machining processes; and based on machines. [Continues.

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference

    Honey bee based trust management system for cloud computing

    Get PDF
    Cloud computing has been considered as the new computing paradigm that would offer computer resources over the Internet as service.With the widespread use of cloud, computing would become another utility similar to electricity, water, gas and telephony where the customer would be paying only for the services consumed contrary to the current practice of paying a monthly or annual fixed charge irrespective of use.For cloud computing to become accepted by everybody, several issues need to be resolved.One of the most important issues to be addressed is cloud security.Trust management is one of the important components of cloud security that requires special attention. In this paper, the authors propose the concept that honey bee algorithm which has been developed to solve complex optimization problems can be successfully used to address this issue.The authors have taken a closer look at the optimization problems that had been solved using the honey bee algorithm and the similarity between these problems and the cloud computing environment.Thus concluding that the honey bee algorithm could be successfully used to solve the trust management issue in cloud computing

    A Miniature Robot for Isolating and Tracking Neurons in Extracellular Cortical Recordings

    Get PDF
    This paper presents a miniature robot device and control algorithm that can autonomously position electrodes in cortical tissue for isolation and tracking of extracellular signals of individual neurons. Autonomous electrode positioning can significantly enhance the efficiency and quality of acute electrophysiolgical experiments aimed at basic understanding of the nervous system. Future miniaturized systems of this sort could also overcome some of the inherent difficulties in estabilishing long-lasting neural interfaces that are needed for practical realization of neural prostheses. The paper describes the robot's design and summarizes the overall structure of the control system that governs the electrode positioning process. We present a new sequential clustering algorithm that is key to improving our system's performance, and which may have other applications in robotics. Experimental results in macaque cortex demonstrate the validity of our approach

    APPLICATION OF ARTIFICIAL NEURAL NETWORK TECHNIQUES FOR DESIGN OF MODULAR MINICELL CONFIGURATIONS

    Get PDF
    Artificial neural networks, so far, have not been used for designing modular cells. Therefore, Self-organizing neural network (SONN) is used in the present research to design minicell-based manufacturing system. Two previously developed methods were studied and implemented using SONN model. Results obtained are compared with previous results to analyze the effectiveness of SONN in designing minicells. A new method is then developed with the objective to design minicells more effectively and efficiently. Results of all three methods are compared using machine-count and materialhandling as performance measuring criteria to find out the best metho
    corecore