24 research outputs found

    EDOCR: ENERGY DENSITY ON-DEMAND CLUSTER ROUTING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Energy management is one of the critical parameters in Wireless Sensor Networks. In this paper we attempt for a solution to balance the energy usage for maximizing the network lifetime, increase the packet delivery ratio and throughput. Our proposed algorithm is based on Energy Density of the clusters in Wireless Sensor Networks. The cluster head is selected using two step method and on-demand routing approach to calculate the balanced energy shortest path from source to sink. This unique approach maintains the balanced energy utilization among all nodes by selecting the different cluster heads dynamically. Our simulation results have compared with one of the plain routing scheme (EBRP) and cluster based routing (TSCHS), which shows the significant improvements in minimizing the delay and energy utilization and maximizing the network lifetime and throughput with respect to these works

    An Overview of Own Tracking Wireless Sensors with GSM-GPS Features

    Get PDF
    Wireless Sensors (WS) mobility and pause time have a major impact directly influencing the energy consumption. Lifetime of a WS Network (WSN) depends directly on the energy consumption, thus, the hardware and software components must be optimized for energy management. This study aims to combine a compact hardware architecture with a smart energy management efficiency in order to increase ratio Lifetime/Energy Consumption, to improve the operating time on a portable tracking system with GPS/GSM/GPRS features and own power. In this paper we present the evolution of own WS tracking architecture with GPS/GSM/GPRS features, basic criterion being the lifetime combined with low power consumption. Concern was focused on hardware and software areas: Large number of physical components led to reconsideration of hardware architecture, while for software, we focused on algorithms able to reduce the number of bits in transmitted data packets, which help to reduce energy consumption. The results and conclusions show that the goal was achieved

    Performance Evaluation of Routing Protocols in Wireless Sensor Networks

    Get PDF
    The growing field of information technology enhanced the capabilities of the wireless communication. The large usage of WSN in the various fields of the real world is scaling with the wide variety of roles for wireless sensor network performance is challenging tasks. The issues of performance in the wireless sensor networks in many literatures, yet more studies are being done on the performance because the user and application needs are keep increasing,to encounter the challenges of the performance issues are studied here by digging out the routing protocols performance in WSN. To conduct the study and analysis on performance of WSN protocols the there are various performance metrics used for the evaluation of performance in WSN. This study will be carried out to come up with the simulation experiments over the directed diffusion (DD) and LEACH routing protocols in terms of energy consumption, congestion and reliability in the wireless sensor networks (WSN) environment with the low power consumptions. The simulation experiments in this study are based on the reliability, delay and other constraints to compare the speed, reliability and electricity saving data communication in the wireless sensor networks (WSN). The discussion of the conducted simulation experiments describes the steps which are pertaining to the protocols and tradeoffs and complexity of the data traffic for the efficiency. The NS2 simulation is used for the simulation based experiments for performance of wireless sensor network (WSN) communications which is demonstrating the comparative effectiveness of the routing protocols in the recent concepts. The results of the simulation are lightening the ways for the minimization of the delay and enhancement in the reliability issues in wireless sensor networks (WSN)

    EDOCR: ENERGY DENSITY ON-DEMAND CLUSTER ROUTING IN WIRELESS SENSOR NETWORKS

    Get PDF
    ABSTRACT Energy management is one of the critical parameters in Wireless Senso

    Opportunistic data collection and routing in segmented wireless sensor networks

    Get PDF
    La surveillance régulière des opérations dans les aires de manoeuvre (voies de circulation et pistes) et aires de stationnement d'un aéroport est une tâche cruciale pour son fonctionnement. Les stratégies utilisées à cette fin visent à permettre la mesure des variables environnementales, l'identification des débris (FOD) et l'enregistrement des statistiques d'utilisation de diverses sections de la surface. Selon un groupe de gestionnaires et contrôleurs d'aéroport interrogés, cette surveillance est un privilège des grands aéroports en raison des coûts élevés d'acquisition, d'installation et de maintenance des technologies existantes. Les moyens et petits aéroports se limitent généralement à la surveillance de quelques variables environnementales et des FOD effectuée visuellement par l'homme. Cette dernière activité impose l'arrêt du fonctionnement des pistes pendant l'inspection. Dans cette thèse, nous proposons une solution alternative basée sur les réseaux de capteurs sans fil (WSN) qui, contrairement aux autres méthodes, combinent les propriétés de faible coût d'installation et maintenance, de déploiement rapide, d'évolutivité tout en permettant d'effectuer des mesures sans interférer avec le fonctionnement de l'aéroport. En raison de la superficie d'un aéroport et de la difficulté de placer des capteurs sur des zones de transit, le WSN se composerait d'une collection de sous-réseaux isolés les uns des autres et du puits. Pour gérer cette segmentation, notre proposition s'appuie sur l'utilisation opportuniste des véhicules circulants dans l'aéroport considérés alors comme un type spécial de nœud appelé Mobile Ubiquitous LAN Extension (MULE) chargé de collecter les données des sous-réseaux le long de son trajet et de les transférer vers le puits. L'une des exigences pour le déploiement d'un nouveau système dans un aéroport est qu'il cause peu ou pas d'interruption des opérations régulières. C'est pourquoi l'utilisation d'une approche opportuniste basé sur des MULE est privilégiée dans cette thèse. Par opportuniste, nous nous référons au fait que le rôle de MULE est joué par certains des véhicules déjà existants dans un aéroport et effectuant leurs déplacements normaux. Et certains nœuds des sous- réseaux exploiteront tout moment de contact avec eux pour leur transmettre les données à transférer ensuite au puits. Une caractéristique des MULEs dans notre application est qu'elles ont des trajectoires structurées (suivant les voies de circulation dans l'aéroport), en ayant éventuellement un contact avec l'ensemble des nœuds situés le long de leur trajet (appelés sous-puits). Ceci implique la nécessité de définir une stratégie de routage dans chaque sous-réseau, capable d'acheminer les données collectées des nœuds vers les sous-puits et de répartir les paquets de données entre eux afin que le temps en contact avec la MULE soit utilisé le plus efficacement possible. Dans cette thèse, nous proposons un protocole de routage remplissant ces fonctions. Le protocole proposé est nommé ACME (ACO-based routing protocol for MULE-assisted WSNs). Il est basé sur la technique d'Optimisation par Colonies de Fourmis. ACME permet d'assigner des nœuds à des sous-puits puis de définir les chemins entre eux, en tenant compte de la minimisation de la somme des longueurs de ces chemins, de l'équilibrage de la quantité de paquets stockés par les sous-puits et du nombre total de retransmissions. Le problème est défini comme une tâche d'optimisation multi-objectif qui est résolue de manière distribuée sur la base des actions des nœuds dans un schéma collaboratif. Nous avons développé un environnement de simulation et effectué des campagnes de calculs dans OMNeT++ qui montrent les avantages de notre protocole en termes de performances et sa capacité à s'adapter à une grande variété de topologies de réseaux.The regular monitoring of operations in both movement areas (taxiways and runways) and non-movement areas (aprons and aircraft parking spots) of an airport, is a critical task for its functioning. The set of strategies used for this purpose include the measurement of environmental variables, the identification of foreign object debris (FOD), and the record of statistics of usage for diverse sections of the surface. According to a group of airport managers and controllers interviewed by us, the wide monitoring of most of these variables is a privilege of big airports due to the high acquisition, installation and maintenance costs of most common technologies. Due to this limitation, smaller airports often limit themselves to the monitoring of environmental variables at some few spatial points and the tracking of FOD performed by humans. This last activity requires stopping the functioning of the runways while the inspection is conducted. In this thesis, we propose an alternative solution based on Wireless Sensor Network (WSN) which, unlike the other methods/technologies, combines the desirable properties of low installation and maintenance cost, scalability and ability to perform measurements without interfering with the regular functioning of the airport. Due to the large extension of an airport and the difficulty of placing sensors over transit areas, the WSN might result segmented into a collection of subnetworks isolated from each other and from the sink. To overcome this problem, our proposal relies on a special type of node called Mobile Ubiquitous LAN Extension (MULE), able to move over the airport surface, gather data from the subnetworks along its way and eventually transfer it to the sink. One of the main demands for the deployment of any new system in an airport is that it must have little or no interference with the regular operations. This is why the use of an opportunistic approach for the transfer of data from the subnetworks to the MULE is favored in this thesis. By opportunistic we mean that the role of MULE will be played by some of the typical vehicles already existing in an airport doing their normal displacements, and the subnetworks will exploit any moment of contact with them to forward data to the sink. A particular characteristic of the MULEs in our application is that they move along predefined structured trajectories (given by the layout of the airport), having eventual contact with the set of nodes located by the side of the road (so-called subsinks). This implies the need for a data routing strategy to be used within each subnetwork, able to lead the collected data from the sensor nodes to the subsinks and distribute the data packets among them so that the time in contact with the MULE is used as efficiently as possible. In this thesis, we propose a routing protocol which undertakes this task. Our proposed protocol is named ACME, standing for ACO-based routing protocol for MULE-assisted WSNs. It is founded on the well known Ant Colony Optimization (ACO) technique. The main advantage of ACO is its natural fit to the decentralized nature of WSN, which allows it to perform distributed optimizations (based on local interactions) leading to remarkable overall network performance. ACME is able to assign sensor nodes to subsinks and generate the corresponding multi-hop paths while accounting for the minimization of the total path length, the total subsink imbalance and the total number of retransmissions. The problem is defined as a multi-objective optimization task which is resolved in a distributed manner based on actions of the sensor nodes acting in a collaborative scheme. We conduct a set of computational experiments in the discrete event simulator OMNeT++ which shows the advantages of our protocol in terms of performance and its ability to adapt to a variety of network topologie

    An energy-efficient routing protocol for Hybrid-RFID Sensor Network

    Get PDF
    Radio Frequency Identification (RFID) systems facilitate detection and identification of objects that are not easily detectable or distinguishable. However, they do not provide information about the condition of the objects they detect. Wireless sensor networks (WSNs), on the other hand provide information about the condition of the objects as well as the environment. The integration of these two technologies results in a new type of smart network where RFID-based components are combined with sensors. This research proposes an integration technique that combines conventional wireless sensor nodes, sensor-tags, hybrid RFID-sensor nodes and a base station into a smart network named Hybrid RFID-Sensor Network (HRSN)

    Energy-efficient routing algorithms based on swarm intelligence for wireless sensor networks

    Get PDF
    High efficient routing is an important factor to be considered in the design of limited energy resource Wireless Sensor Networks (WSNs). WSN environment has limited resources in terms of on-board energy, transmission power, processing, and storage, and this prompt for careful resource management and new routing protocol so as to counteract the challenges. This work first introduces the concept of wireless sensor networks, routing in WSNs, and its design factors as they affect routing protocols. Next, a comprehensive review of the most prominent routing protocols in WSN, from the classical routing protocols to swarm intelligence based protocols is presented. From the literature study, it was found that comparing routing protocols in WSNs is currently a very challenging task for protocol designers. Often, much time is required to re-create and re-simulate algorithms from descriptions in published papers to perform the comparison. Compounding the difficulty is that some simulation parameters and performance metrics may not be mentioned. We then see a need in the research community to have standard simulation and performance metrics for comparing different protocols. To this end, we re-simulate different protocols using a Matlab based simulator; Routing Modeling Application Simulation Environment (RMASE), and gives simulation results for standard simulation and performance metrics which we hope will serve as a benchmark for future comparisons for the research community. Also, from the literature study, Energy Efficient Ant-Based Routing (EEABR) protocol was found to be the most efficient protocol due to its low energy consumption and low memory usage in WSNs nodes. Following this efficient protocol, an Improved Energy Efficient Ant-Based Routing (IEEABR) Protocol was proposed. Simulation were performed using Network Simulator-2 (NS-2), and from the results, our proposed algorithm performs better in terms of energy utilization efficiency, average energy of network nodes, and minimum energy of nodes. We further improved on the proposed protocol and simulation performed in another well-known WSNs MATLAB-based simulator; Routing Modeling Application Simulation Environment (RMASE), using static, mobile and dynamic scenario. Simulation results show that the proposed algorithm increases energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR and also found to out-perform other four Ant-based routing protocols. We further show how this algorithm could be used for energy management in sensor network in the presence of energy harvesters. However, high number of control packets is generated by the IEEABR due to the proactive nature of its path establishment. As such, a new routing protocol for WSNs that has less control packets due to its on-demand (reactive) nature is proposed. This new routing protocol termed Termite-hill is borrowed from the principles behind the termite’s mode of communication. We first study the foraging principles of a termite colony and utilize the inspirational concepts to develop a distributed, simple and energy-efficient routing protocol for WSNs. We perform simulation studies to compare the behavior and performance of the Termite-hill design with an existing classical and on-demand protocol (AODV) and other Swarm Intelligence (SI) based WSN protocols in both static, dynamic and mobility scenarios of WSN. The simulation results demonstrate that Termite-hill outperforms its competitors in most of the assumed scenarios and metrics with less latency. Further studies show that the current practice in modeling and simulation of wireless sensor network (WSN) environments has been towards the development of functional WSN systems for event gathering, and optimization of the necessary performance metrics using heuristics and intuition. The evaluation and validation are mostly done using simulation approaches and practical implementations. Simulation studies, despite their wide use and merits of network systems and algorithm validation, have some drawbacks like long simulation times, and practical implementation might be cost ineffective if the system is not properly studied before the design. We therefore argue that simulation based validation and practical implementation of WSN systems and environments should be further strengthened through mathematical analysis. To conclude this work and to gain more insight on the behavior of the termite-hill routing algorithm, we developed our modeling framework for WSN topology and information extraction in a grid based and line based randomly distributed sensor network. We strengthen the work with a model of the effect of node mobility on energy consumption of Termite-hill routing algorithm as a function of event success rate and occasional change in topology. The results of our mathematical analysis were also compared with the simulation results

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    corecore