58 research outputs found

    Polyominoes with nearly convex columns: An undirected model

    Get PDF
    Column-convex polyominoes were introduced in 1950's by Temperley, a mathematical physicist working on "lattice gases". By now, column-convex polyominoes are a popular and well-understood model. There exist several generalizations of column-convex polyominoes; an example is a model called multi-directed animals. In this paper, we introduce a new sequence of supersets of column-convex polyominoes. Our model (we call it level m column-subconvex polyominoes) is defined in a simple way. We focus on the case when cells are hexagons and we compute the area generating functions for the levels one and two. Both of those generating functions are complicated q-series, whereas the area generating function of column-convex polyominoes is a rational function. The growth constants of level one and level two column-subconvex polyominoes are 4.319139 and 4.509480, respectively. For comparison, the growth constants of column-convex polyominoes, multi-directed animals and all polyominoes are 3.863131, 4.587894 and 5.183148, respectively.Comment: 26 pages, 14 figure

    Self-Healing Tile Sets

    Get PDF
    Biology provides the synthetic chemist with a tantalizing and frustrating challenge: to create complex objects, defined from the molecular scale up to meters, that construct themselves from elementary components, and perhaps even reproduce themselves. This is the challenge of bottom-up fabrication. The most compelling answer to this challenge was formulated in the early 1980s by Ned Seeman, who realized that the information carried by DNA strands provides a means to program molecular self-assembly, with potential applications including DNA scaffolds for crystallography [19] or for molecular electronic circuits [15]. This insight opened the doors to engineering with the rich set of phenomena available in nucleic acid chemistry [20]
    • …
    corecore