2,184 research outputs found

    The crossing number of locally twisted cubes

    Full text link
    The {\it crossing number} of a graph GG is the minimum number of pairwise intersections of edges in a drawing of GG. Motivated by the recent work [Faria, L., Figueiredo, C.M.H. de, Sykora, O., Vrt'o, I.: An improved upper bound on the crossing number of the hypercube. J. Graph Theory {\bf 59}, 145--161 (2008)] which solves the upper bound conjecture on the crossing number of nn-dimensional hypercube proposed by Erd\H{o}s and Guy, we give upper and lower bounds of the crossing number of locally twisted cube, which is one of variants of hypercube.Comment: 17 pages, 12 figure

    How Low Can You Go? New Bounds on the Biplanar Crossing Number of Low-dimensional Hypercubes

    Get PDF
    In this note we provide an improved upper bound on the biplanar crossing number of the 8-dimensional hypercube. The k-planar crossing number of a graph cr k ( G) is the number of crossings required when every edge of G must be drawn in one of k distinct planes. It was shown in [2] that cr 2 ( Q 8 ) ≤ 256 which we improve to cr 2 ( Q 8 ) ≤ 128. Our approach highlights the relationship between symmetric drawings and the study of k-planar crossing numbers. We conclude with several open questions concerning this relationship

    Drawing a Graph in a Hypercube

    Full text link
    A dd-dimensional hypercube drawing of a graph represents the vertices by distinct points in {0,1}d\{0,1\}^d, such that the line-segments representing the edges do not cross. We study lower and upper bounds on the minimum number of dimensions in hypercube drawing of a given graph. This parameter turns out to be related to Sidon sets and antimagic injections.Comment: Submitte

    An ETH-Tight Exact Algorithm for Euclidean TSP

    Get PDF
    We study exact algorithms for {\sc Euclidean TSP} in Rd\mathbb{R}^d. In the early 1990s algorithms with nO(n)n^{O(\sqrt{n})} running time were presented for the planar case, and some years later an algorithm with nO(n1−1/d)n^{O(n^{1-1/d})} running time was presented for any d≥2d\geq 2. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on {\sc Euclidean TSP}, except for a lower bound stating that the problem admits no 2O(n1−1/d−ϵ)2^{O(n^{1-1/d-\epsilon})} algorithm unless ETH fails. Up to constant factors in the exponent, we settle the complexity of {\sc Euclidean TSP} by giving a 2O(n1−1/d)2^{O(n^{1-1/d})} algorithm and by showing that a 2o(n1−1/d)2^{o(n^{1-1/d})} algorithm does not exist unless ETH fails.Comment: To appear in FOCS 201

    Quantum search algorithms on a regular lattice

    Full text link
    Quantum algorithms for searching one or more marked items on a d-dimensional lattice provide an extension of Grover's search algorithm including a spatial component. We demonstrate that these lattice search algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family of quantum random walks. We give approximations for both the level-splitting at the avoided crossing and the effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible to give the leading order behaviour for the search time and the localisation probability in the limit of large lattice size including the leading order coefficients. For d=2 and d=3, these coefficients are calculated explicitly. Closed form expressions are given for higher dimensions
    • …
    corecore