749 research outputs found

    Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive Sensing Approach

    Full text link
    A key challenge of massive MTC (mMTC), is the joint detection of device activity and decoding of data. The sparse characteristics of mMTC makes compressed sensing (CS) approaches a promising solution to the device detection problem. However, utilizing CS-based approaches for device detection along with channel estimation, and using the acquired estimates for coherent data transmission is suboptimal, especially when the goal is to convey only a few bits of data. First, we focus on the coherent transmission and demonstrate that it is possible to obtain more accurate channel state information by combining conventional estimators with CS-based techniques. Moreover, we illustrate that even simple power control techniques can enhance the device detection performance in mMTC setups. Second, we devise a new non-coherent transmission scheme for mMTC and specifically for grant-free random access. We design an algorithm that jointly detects device activity along with embedded information bits. The approach leverages elements from the approximate message passing (AMP) algorithm, and exploits the structured sparsity introduced by the non-coherent transmission scheme. Our analysis reveals that the proposed approach has superior performance compared to application of the original AMP approach.Comment: Submitted to IEEE Transactions on Communication

    Simplified Multiuser Detection for SCMA with Sum-Product Algorithm

    Full text link
    Sparse code multiple access (SCMA) is a novel non-orthogonal multiple access technique, which fully exploits the shaping gain of multi-dimensional codewords. However, the lack of simplified multiuser detection algorithm prevents further implementation due to the inherently high computation complexity. In this paper, general SCMA detector algorithms based on Sum-product algorithm are elaborated. Then two improved algorithms are proposed, which simplify the detection structure and curtail exponent operations quantitatively in logarithm domain. Furthermore, to analyze these detection algorithms fairly, we derive theoretical expression of the average mutual information (AMI) of SCMA (SCMA-AMI), and employ a statistical method to calculate SCMA-AMI based specific detection algorithm. Simulation results show that the performance is almost as well as the based message passing algorithm in terms of both BER and AMI while the complexity is significantly decreased, compared to the traditional Max-Log approximation method

    A Coupled Compressive Sensing Scheme for Unsourced Multiple Access

    Full text link
    This article introduces a novel paradigm for the unsourced multiple-access communication problem. This divide-and-conquer approach leverages recent advances in compressive sensing and forward error correction to produce a computationally efficient algorithm. Within the proposed framework, every active device first partitions its data into several sub-blocks, and subsequently adds redundancy using a systematic linear block code. Compressive sensing techniques are then employed to recover sub-blocks, and the original messages are obtained by connecting pieces together using a low-complexity tree-based algorithm. Numerical results suggest that the proposed scheme outperforms other existing practical coding schemes. Measured performance lies approximately 4.34.3~dB away from the Polyanskiy achievability limit, which is obtained in the absence of complexity constraints
    • …
    corecore