1,090 research outputs found

    A HYBRID APPROACH FOR RURAL FEEDER DESIGN

    Get PDF
    In this paper, a population based approach for conductor size selection in rural radial distribution system is presented. The proposed hybrid approach implies a particle swarm optimization (PSO) approach in combination with mutant property of differential evolution (DE) for conductor size selection in radial distribution system. The conductor size for each feeder segment is selected such that the total cost of capital investment and capitalized cost of energy losses is minimized while constraints of voltage at each node and current carrying capacity of conductor is within the limits. The applicability and effectiveness of the proposed method is demonstrated with the help of 32-node test system

    Automatic Fault Diagnostic System for Induction Motors under Transient Regime Optimized with Expert Systems

    Full text link
    [EN] Induction machines (IMs) power most modern industrial processes (induction motors) and generate an increasing portion of our electricity (doubly fed induction generators). A continuous monitoring of the machine's condition can identify faults at an early stage, and it can avoid costly, unexpected shutdowns of production processes, with economic losses well beyond the cost of the machine itself. Machine current signature analysis (MCSA), has become a prominent technique for condition-based maintenance, because, in its basic approach, it is non-invasive, requires just a current sensor, and can process the current signal using a standard fast Fourier transform (FFT). Nevertheless, the industrial application of MCSA requires well-trained maintenance personnel, able to interpret the current spectra and to avoid false diagnostics that can appear due to electrical noise in harsh industrial environments. This task faces increasing difficulties, especially when dealing with machines that work under non-stationary conditions, such as wind generators under variable wind regime, or motors fed from variable speed drives. In these cases, the resulting spectra are no longer simple one-dimensional plots in the time domain; instead, they become two-dimensional images in the joint time-frequency domain, requiring highly specialized personnel to evaluate the machine condition. To alleviate these problems, supporting the maintenance staff in their decision process, and simplifying the correct use of fault diagnosis systems, expert systems based on neural networks have been proposed for automatic fault diagnosis. However, all these systems, up to the best knowledge of the authors, operate under steady-state conditions, and are not applicable in a transient regime. To solve this problem, this paper presents an automatic system for generating optimized expert diagnostic systems for fault detection when the machine works under transient conditions. The proposed method is first theoretically introduced, and then it is applied to the experimental diagnosis of broken bars in a commercial cage induction motor.Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M.; Pérez-Cruz, J.; Riera-Guasp, M. (2019). Automatic Fault Diagnostic System for Induction Motors under Transient Regime Optimized with Expert Systems. Electronics. 8(1):1-16. https://doi.org/10.3390/electronics8010006S11681Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Perez-Cruz, J., Roger-Folch, J., Riera-Guasp, M., & Martinez-Roman, J. (2015). Harmonic Order Tracking Analysis: A Novel Method for Fault Diagnosis in Induction Machines. IEEE Transactions on Energy Conversion, 30(3), 833-841. doi:10.1109/tec.2015.2416973Sapena-Bano, A., Burriel-Valencia, J., Pineda-Sanchez, M., Puche-Panadero, R., & Riera-Guasp, M. (2017). The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions. IEEE Transactions on Energy Conversion, 32(1), 244-256. doi:10.1109/tec.2016.2626008Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., & Pineda-Sanchez, M. (2017). Short-Frequency Fourier Transform for Fault Diagnosis of Induction Machines Working in Transient Regime. IEEE Transactions on Instrumentation and Measurement, 66(3), 432-440. doi:10.1109/tim.2016.2647458Yin, Z., & Hou, J. (2016). Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. Neurocomputing, 174, 643-650. doi:10.1016/j.neucom.2015.09.081Bazan, G. H., Scalassara, P. R., Endo, W., Goedtel, A., Godoy, W. F., & Palácios, R. H. C. (2017). Stator fault analysis of three-phase induction motors using information measures and artificial neural networks. Electric Power Systems Research, 143, 347-356. doi:10.1016/j.epsr.2016.09.031Mustafidah, H., Hartati, S., Wardoyo, R., & Harjoko, A. (2014). Selection of Most Appropriate Backpropagation Training Algorithm in Data Pattern Recognition. International Journal of Computer Trends and Technology, 14(2), 92-95. doi:10.14445/22312803/ijctt-v14p120Godoy, W. F., da Silva, I. N., Lopes, T. D., Goedtel, A., & Palácios, R. H. C. (2016). Application of intelligent tools to detect and classify broken rotor bars in three-phase induction motors fed by an inverter. IET Electric Power Applications, 10(5), 430-439. doi:10.1049/iet-epa.2015.0469Ghorbanian, V., & Faiz, J. (2015). A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes. Mechanical Systems and Signal Processing, 54-55, 427-456. doi:10.1016/j.ymssp.2014.08.022Valles-Novo, R., de Jesus Rangel-Magdaleno, J., Ramirez-Cortes, J. M., Peregrina-Barreto, H., & Morales-Caporal, R. (2015). Empirical Mode Decomposition Analysis for Broken-Bar Detection on Squirrel Cage Induction Motors. IEEE Transactions on Instrumentation and Measurement, 64(5), 1118-1128. doi:10.1109/tim.2014.2373513De Santiago-Perez, J. J., Rivera-Guillen, J. R., Amezquita-Sanchez, J. P., Valtierra-Rodriguez, M., Romero-Troncoso, R. J., & Dominguez-Gonzalez, A. (2018). Fourier transform and image processing for automatic detection of broken rotor bars in induction motors. Measurement Science and Technology, 29(9), 095008. doi:10.1088/1361-6501/aad3aaMerabet, H., Bahi, T., Drici, D., Halam, N., & Bedoud, K. (2017). Diagnosis of rotor fault using neuro-fuzzy inference system. Journal of Fundamental and Applied Sciences, 9(1), 170. doi:10.4314/jfas.v9i1.12Riera-Guasp, M., Pineda-Sanchez, M., Perez-Cruz, J., Puche-Panadero, R., Roger-Folch, J., & Antonino-Daviu, J. A. (2012). Diagnosis of Induction Motor Faults via Gabor Analysis of the Current in Transient Regime. IEEE Transactions on Instrumentation and Measurement, 61(6), 1583-1596. doi:10.1109/tim.2012.2186650Gyftakis, K. N., Marques Cardoso, A. J., & Antonino-Daviu, J. A. (2017). Introducing the Filtered Park’s and Filtered Extended Park’s Vector Approach to detect broken rotor bars in induction motors independently from the rotor slots number. Mechanical Systems and Signal Processing, 93, 30-50. doi:10.1016/j.ymssp.2017.01.04

    DBSCAN inspired task scheduling algorithm for cloud infrastructure

    Get PDF
    Cloud computing in today\u27s computing environment plays a vital role, by providing efficient and scalable computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algorithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The proposed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve performance in terms of execution time, average start time and finish time. The experiment result shows proposed model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in average start time and average finish time. The experimental results are compared with existing ACO and PSO algorithms for task scheduling

    Computational Intelligence Application in Electrical Engineering

    Get PDF
    The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering

    A combined finite element-domain elimination method for minimizing torque ripples in inverter-fed AC motor drive systems

    Get PDF
    Author name used in this publication: S. L. HoAuthor name used in this publication: H. C. Wong2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore