134 research outputs found

    Multimedia search without visual analysis: the value of linguistic and contextual information

    Get PDF
    This paper addresses the focus of this special issue by analyzing the potential contribution of linguistic content and other non-image aspects to the processing of audiovisual data. It summarizes the various ways in which linguistic content analysis contributes to enhancing the semantic annotation of multimedia content, and, as a consequence, to improving the effectiveness of conceptual media access tools. A number of techniques are presented, including the time-alignment of textual resources, audio and speech processing, content reduction and reasoning tools, and the exploitation of surface features

    Audio-Based Semantic Concept Classification for Consumer Video

    Get PDF
    This paper presents a novel method for automatically classifying consumer video clips based on their soundtracks. We use a set of 25 overlapping semantic classes, chosen for their usefulness to users, viability of automatic detection and of annotator labeling, and sufficiency of representation in available video collections. A set of 1873 videos from real users has been annotated with these concepts. Starting with a basic representation of each video clip as a sequence of mel-frequency cepstral coefficient (MFCC) frames, we experiment with three clip-level representations: single Gaussian modeling, Gaussian mixture modeling, and probabilistic latent semantic analysis of a Gaussian component histogram. Using such summary features, we produce support vector machine (SVM) classifiers based on the Kullback-Leibler, Bhattacharyya, or Mahalanobis distance measures. Quantitative evaluation shows that our approaches are effective for detecting interesting concepts in a large collection of real-world consumer video clips

    Prosodic and other Long-Term Features for Speaker Diarization

    Full text link

    Using Deep Neural Networks for Speaker Diarisation

    Get PDF
    Speaker diarisation answers the question “who spoke when?” in an audio recording. The input may vary, but a system is required to output speaker labelled segments in time. Typical stages are Speech Activity Detection (SAD), speaker segmentation and speaker clustering. Early research focussed on Conversational Telephone Speech (CTS) and Broadcast News (BN) domains before the direction shifted to meetings and, more recently, broadcast media. The British Broadcasting Corporation (BBC) supplied data through the Multi-Genre Broadcast (MGB) Challenge in 2015 which showed the difficulties speaker diarisation systems have on broadcast media data. Diarisation is typically an unsupervised task which does not use auxiliary data or information to enhance a system. However, methods which do involve supplementary data have shown promise. Five semi-supervised methods are investigated which use a combination of inputs: different channel types and transcripts. The methods involve Deep Neural Networks (DNNs) for SAD, DNNs trained for channel detection, transcript alignment, and combinations of these approaches. However, the methods are only applicable when datasets contain the required inputs. Therefore, a method involving a pretrained Speaker Separation Deep Neural Network (ssDNN) is investigated which is applicable to every dataset. This technique performs speaker clustering and speaker segmentation using DNNs successfully for meeting data and with mixed results for broadcast media. The task of diarisation focuses on two aspects: accurate segments and speaker labels. The Diarisation Error Rate (DER) does not evaluate the segmentation quality as it does not measure the number of correctly detected segments. Other metrics exist, such as boundary and purity measures, but these also mask the segmentation quality. An alternative metric is presented based on the F-measure which considers the number of hypothesis segments correctly matched to reference segments. A deeper insight into the segment quality is shown through this metric

    Privacy-Sensitive Audio Features for Conversational Speech Processing

    Get PDF
    The work described in this thesis takes place in the context of capturing real-life audio for the analysis of spontaneous social interactions. Towards this goal, we wish to capture conversational and ambient sounds using portable audio recorders. Analysis of conversations can then proceed by modeling the speaker turns and durations produced by speaker diarization. However, a key factor against the ubiquitous capture of real-life audio is privacy. Particularly, recording and storing raw audio would breach the privacy of people whose consent has not been explicitly obtained. In this thesis, we study audio features instead – for recording and storage – that can respect privacy by minimizing the amount of linguistic information, while achieving state-of-the-art performance in conversational speech processing tasks. Indeed, the main contributions of this thesis are the achievement of state-of-the-art performances in speech/nonspeech detection and speaker diarization tasks using such features, which we refer to, as privacy-sensitive. Besides this, we provide a comprehensive analysis of these features for the two tasks in a variety of conditions, such as indoor (predominantly) and outdoor audio. To objectively evaluate the notion of privacy, we propose the use of human and automatic speech recognition tests, with higher accuracy in either being interpreted as yielding lower privacy. For the speech/nonspeech detection (SND) task, this thesis investigates three different approaches to privacy-sensitive features. These approaches are based on simple, instantaneous, feature extraction methods, excitation source information based methods, and feature obfuscation methods. These approaches are benchmarked against Perceptual Linear Prediction (PLP) features under many conditions on a large meeting dataset of nearly 450 hours. Additionally, automatic speech (phoneme) recognition studies on TIMIT showed that the proposed features yield low phoneme recognition accuracies, implying higher privacy. For the speaker diarization task, we interpret the extraction of privacy-sensitive features as an objective that maximizes the mutual information (MI) with speakers while minimizing the MI with phonemes. The source-filter model arises naturally out of this formulation. We then investigate two different approaches for extracting excitation source based features, namely Linear Prediction (LP) residual and deep neural networks. Diarization experiments on the single and multiple distant microphone scenarios from the NIST rich text evaluation datasets show that these features yield a performance close to the Mel Frequency Cepstral coefficients (MFCC) features. Furthermore, listening tests support the proposed approaches in terms of yielding low intelligibility in comparison with MFCC features. The last part of the thesis studies the application of our methods to SND and diarization in outdoor settings. While our diarization study was more preliminary in nature, our study on SND brings about the conclusion that privacy-sensitive features trained on outdoor audio yield performance comparable to that of PLP features trained on outdoor audio. Lastly, we explored the suitability of using SND models trained on indoor conditions for the outdoor audio. Such an acoustic mismatch caused a large drop in performance, which could not be compensated even by combining indoor models

    Automatic social role recognition and its application in structuring multiparty interactions

    Get PDF
    Automatic processing of multiparty interactions is a research domain with important applications in content browsing, summarization and information retrieval. In recent years, several works have been devoted to find regular patterns which speakers exhibit in a multiparty interaction also known as social roles. Most of the research in literature has generally focused on recognition of scenario specific formal roles. More recently, role coding schemes based on informal social roles have been proposed in literature, defining roles based on the behavior speakers have in the functioning of a small group interaction. Informal social roles represent a flexible classification scheme that can generalize across different scenarios of multiparty interaction. In this thesis, we focus on automatic recognition of informal social roles and exploit the influence of informal social roles on speaker behavior for structuring multiparty interactions. To model speaker behavior, we systematically explore various verbal and non verbal cues extracted from turn taking patterns, vocal expression and linguistic style. The influence of social roles on the behavior cues exhibited by a speaker is modeled using a discriminative approach based on conditional random fields. Experiments performed on several hours of meeting data reveal that classification using conditional random fields improves the role recognition performance. We demonstrate the effectiveness of our approach by evaluating it on previously unseen scenarios of multiparty interaction. Furthermore, we also consider whether formal roles and informal roles can be automatically predicted by the same verbal and nonverbal features. We exploit the influence of social roles on turn taking patterns to improve speaker diarization under distant microphone condition. Our work extends the Hidden Markov model (HMM)- Gaussian mixture model (GMM) speaker diarization system, and is based on jointly estimating both the speaker segmentation and social roles in an audio recording. We modify the minimum duration constraint in HMM-GMM diarization system by using role information to model the expected duration of speaker's turn. We also use social role n-grams as prior information to model speaker interaction patterns. Finally, we demonstrate the application of social roles for the problem of topic segmentation in meetings. We exploit our findings that social roles can dynamically change in conversations and use this information to predict topic changes in meetings. We also present an unsupervised method for topic segmentation which combines social roles and lexical cohesion. Experimental results show that social roles improve performance of both speaker diarization and topic segmentation

    Classification and Separation Techniques based on Fundamental Frequency for Speech Enhancement

    Get PDF
    [ES] En esta tesis se desarrollan nuevos algoritmos de clasificación y mejora de voz basados en las propiedades de la frecuencia fundamental (F0) de la señal vocal. Estas propiedades permiten su discriminación respecto al resto de señales de la escena acústica, ya sea mediante la definición de características (para clasificación) o la definición de modelos de señal (para separación). Tres contribuciones se aportan en esta tesis: 1) un algoritmo de clasificación de entorno acústico basado en F0 para audífonos digitales, capaz de clasificar la señal en las clases voz y no-voz; 2) un algoritmo de detección de voz sonora basado en la aperiodicidad, capaz de funcionar en ruido no estacionario y con aplicación a mejora de voz; 3) un algoritmo de separación de voz y ruido basado en descomposición NMF, donde el ruido se modela de una forma genérica mediante restricciones matemáticas.[EN]This thesis is focused on the development of new classification and speech enhancement algorithms based, explicitly or implicitly, on the fundamental frequency (F0). The F0 of speech has a number of properties that enable speech discrimination from the remaining signals in the acoustic scene, either by defining F0-based signal features (for classification) or F0-based signal models (for separation). Three main contributions are included in this work: 1) an acoustic environment classification algorithm for hearing aids based on F0 to classify the input signal into speech and nonspeech classes; 2) a frame-by-frame basis voiced speech detection algorithm based on the aperiodicity measure, able to work under non-stationary noise and applicable to speech enhancement; 3) a speech denoising algorithm based on a regularized NMF decomposition, in which the background noise is described in a generic way with mathematical constraints.Tesis Univ. Jaén. Departamento de Ingeniería de Telecomunición. Leída el 11 de enero de 201

    Unsupervised video indexing on audiovisual characterization of persons

    Get PDF
    Cette thèse consiste à proposer une méthode de caractérisation non-supervisée des intervenants dans les documents audiovisuels, en exploitant des données liées à leur apparence physique et à leur voix. De manière générale, les méthodes d'identification automatique, que ce soit en vidéo ou en audio, nécessitent une quantité importante de connaissances a priori sur le contenu. Dans ce travail, le but est d'étudier les deux modes de façon corrélée et d'exploiter leur propriété respective de manière collaborative et robuste, afin de produire un résultat fiable aussi indépendant que possible de toute connaissance a priori. Plus particulièrement, nous avons étudié les caractéristiques du flux audio et nous avons proposé plusieurs méthodes pour la segmentation et le regroupement en locuteurs que nous avons évaluées dans le cadre d'une campagne d'évaluation. Ensuite, nous avons mené une étude approfondie sur les descripteurs visuels (visage, costume) qui nous ont servis à proposer de nouvelles approches pour la détection, le suivi et le regroupement des personnes. Enfin, le travail s'est focalisé sur la fusion des données audio et vidéo en proposant une approche basée sur le calcul d'une matrice de cooccurrence qui nous a permis d'établir une association entre l'index audio et l'index vidéo et d'effectuer leur correction. Nous pouvons ainsi produire un modèle audiovisuel dynamique des intervenants.This thesis consists to propose a method for an unsupervised characterization of persons within audiovisual documents, by exploring the data related for their physical appearance and their voice. From a general manner, the automatic recognition methods, either in video or audio, need a huge amount of a priori knowledge about their content. In this work, the goal is to study the two modes in a correlated way and to explore their properties in a collaborative and robust way, in order to produce a reliable result as independent as possible from any a priori knowledge. More particularly, we have studied the characteristics of the audio stream and we have proposed many methods for speaker segmentation and clustering and that we have evaluated in a french competition. Then, we have carried a deep study on visual descriptors (face, clothing) that helped us to propose novel approches for detecting, tracking, and clustering of people within the document. Finally, the work was focused on the audiovisual fusion by proposing a method based on computing the cooccurrence matrix that allowed us to establish an association between audio and video indexes, and to correct them. That will enable us to produce a dynamic audiovisual model for each speaker

    Mapping Acoustic and Semantic Dimensions of Auditory Perception

    Get PDF
    Auditory categorisation is a function of sensory perception which allows humans to generalise across many different sounds present in the environment and classify them into behaviourally relevant categories. These categories cover not only the variance of acoustic properties of the signal but also a wide variety of sound sources. However, it is unclear to what extent the acoustic structure of sound is associated with, and conveys, different facets of semantic category information. Whether people use such data and what drives their decisions when both acoustic and semantic information about the sound is available, also remains unknown. To answer these questions, we used the existing methods broadly practised in linguistics, acoustics and cognitive science, and bridged these domains by delineating their shared space. Firstly, we took a model-free exploratory approach to examine the underlying structure and inherent patterns in our dataset. To this end, we ran principal components, clustering and multidimensional scaling analyses. At the same time, we drew sound labels’ semantic space topography based on corpus-based word embeddings vectors. We then built an LDA model predicting class membership and compared the model-free approach and model predictions with the actual taxonomy. Finally, by conducting a series of web-based behavioural experiments, we investigated whether acoustic and semantic topographies relate to perceptual judgements. This analysis pipeline showed that natural sound categories could be successfully predicted based on the acoustic information alone and that perception of natural sound categories has some acoustic grounding. Results from our studies help to recognise the role of physical sound characteristics and their meaning in the process of sound perception and give an invaluable insight into the mechanisms governing the machine-based and human classifications
    corecore