2,611 research outputs found

    Numerical study on signatures of atmospheric convective cells in radar images of the ocean

    No full text
    Current and wind variations at the ocean surface can give rise to a modulation of the sea surface roughness and thus become visible in radar images. The discrimination between radar signatures of oceanic and atmospheric phenomena can be quite difficult, since signatures of different origin can have very similar shapes and magnitudes and are often superimposed upon each other. In this work we employ a numerical radar imaging model for an investigation of typical properties of radar signatures of atmospheric convective cells and of theoretical differences between such atmospherically induced radar signatures and those of oceanic phenomena. We show that main characteristics of observed multifrequency/multipolarization radar signatures of atmospheric convective cells over the Gulf Stream are reproduced quite well by the proposed model. This encourages us to vary wind and radar parameters systematically in order to get a general overview of the dependency of atmospherically induced radar signatures on these parameters. Finally, we compare typical characteristics of radar signatures of atmospheric and oceanic phenomena, and we present simulated radar images of a scenario of superimposed atmospheric convective cells and oceanic internal waves. We show that the proposed model supports the experimental finding that radar signatures of oceanic phenomena are stronger at horizontal (HH) than at vertical (VV) polarization, while atmospherically induced radar signatures are better visible at VV polarization

    Technical approaches, chapter 3, part E

    Get PDF
    Radar altimeters, scatterometers, and imaging radar are described in terms of their functions, future developments, constraints, and applications

    Theoretical modeling of dual-frequency scatterometer response: improving ocean wind and rainfall effects

    Get PDF
    Ocean surface wind is a key parameter of the Earth’s climate system. Occurring at the interface between the ocean and the atmosphere, ocean winds modulate fluxes of heat, moisture and gas exchanges. They reflect the lower branch of the atmospheric circulation and represent a major driver of the ocean circulation. Studying the long-term trends and variability of the ocean surface winds is of key importance in our effort to understand the Earth’s climate system and the causes of its changes. More than three decades of surface wind data are available from spaceborne scatterometer/radiometer missions and there is an ongoing effort to inter-calibrate all these measurements with the aim of building a complete and continuous picture of the ocean wind variability. Currently, spaceborne scatterometer wind retrievals are obtained by inversion algorithms of empirical Geophysical Model Functions (GMFs), which represent the relationship between ocean surface backscattering coefficient and the wind parameters. However, by being measurement-dependent, the GMFs are sensor-specific and, in addition, they may be not properly defined in all weather conditions. This may reduce the accuracy of the wind retrievals in presence of rain and it may also lead to inconsistencies amongst winds retrieved by different sensors. Theoretical models of ocean backscatter have the big potential of providing a more general and understandable relation between the measured microwave backscatter and the surface wind field than empirical models. Therefore, the goal of our research is to understand and address the limitations of the theoretical modeling, in order to propose a new strategy towards the definition of a unified theoretical model able to account for the effects of both wind and rain. In this work, it is described our approach to improve the theoretical modeling of the ocean response, starting from the Ku-band (13.4 GHz) frequency and then broadening the analysis at C-band (5.3 GHz) frequency. This research has revealed the need for new understanding of the frequency-dependent modeling of the surface backscatter in response to the wind-forced surface wave spectrum. Moreover, our ocean wave spectrum modification introduced to include the influences of the surface rain, allows the interpretation/investigation of the scatterometer observations in terms not only of the surface winds but also of the surface rain, defining an additional step needed to improve the wind retrievals algorithms as well as the possibility to jointly estimate wind and rain from scatterometer observations

    Satellite measurement of ocean turbulence

    No full text
    Turbulence and mixing in the surface layer of the ocean is a significant element in the combined ocean-atmosphere system, and plays a considerable role in the transfer of heat, gas and momentum across the air-sea boundary. Furthermore, improving knowledge of the evolution of energy within the ocean system, both globally and locally, holds importance for improving our understanding of the dynamics of the ocean at large- and small-scales. As such, insight into turbulence and turbulent flows at the ocean surface is becoming increasingly important for its role in ocean-atmosphere exchange and, from a wider perspective, climate change.A research project was initiated to understand the role that spacecraft remote-sensing may play in improving observation of “turbulence” (in a broad sense) in the ocean, and for identifying how steps towards such observation may be made. An initial, exploratory study identified the potential benefit of Synthetic Aperture Radar in “bridging the gap” between in-situ and remote observations o

    Toward RADSCAT measurements over the sea and their interpretation

    Get PDF
    Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed

    Characteristics of ocean-reflected short radar pulses with application to altimetry and surface roughness determination

    Get PDF
    Current work related to geodetic altimetry is summarized. Special emphasis is placed on the effects of pulse length on both altimetry and sea-state estimation. Some discussion is also given of system tradeoff parameters and sea truth requirements to support scattering studies. The problem of analyzing signal characteristics and altimeter waveforms arising from rough surface backscattering is also considered

    Application of remote sensors in coastal zone observations

    Get PDF
    A review of processes taking place along coastlines and their biological consideration led to the determination of the elements which are required in the study of coastal structures and which are needed for better utilization of the resources from the oceans. The processes considered include waves, currents, and their influence on the erosion of coastal structures. Biological considerations include coastal fisheries, estuaries, and tidal marshes. Various remote sensors were analyzed for the information which they can provide and sites were proposed where a general ocean-observation plan could be tested

    On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar

    No full text
    In this paper we discuss characteristic properties of radar signatures of oceanic and atmospheric convection features in the Greenland Sea. If the water surface is clean (no surface films or ice coverage), oceanic and atmospheric features can become visible in radar images via a modulation of the surface roughness, and their radar signatures can be very similar. For an unambiguous interpretation and for the retrieval of quantitative information on current and wind variations from radar imagery with such signatures, theoretical models of current and wind phenomena and their radar imaging mechanisms must be utilized. We demonstrate this approach with the analysis of some synthetic aperture radar (SAR) images acquired by the satellites ERS-2 and RADARSAT-1. In once case, an ERS-2 SAR image an a RADARSAT-1 ScanSAR image exhibit pronounced cell-like signatures with length scales on the order of 10-20 km and modulation depths of about 5-6 dB and 9-10 dB, respectively. Simulations with a numerical SAR imagaing model and various input current and wind fields reveal that the signatures in both images can be expained consistently by wind variations on the order of±2.5 ms, but not by surface current variations on realistic orders of magnitude. Accordingly, the observed features must be atmospheric convection cells. This is confirmed by visible typical cloud patterns in a NOAA AVHRR image of the test scenario. In another case, the presence of an oceanic convective chimney is obvious from in situ data, but no signatures of it are visible in an ERS-2 SAR image. We show by numerical simulations with an oceanic convection model and our SAR imaging model that this is consistent with theoretical predictions, since the current gradients associated with the observed chimney are not sufficiently strong to give rise to significant signatures in an ERS-2 SAR image under the given conditions. Further model results indicate that it should be generally difficult to observe oceanic convection features in the Greenland Sea with ERS-2 or RADARSAT-1 SAR, since their signatures resulting from pure wave-current interaction will be too weak to become visible in the noisy SAR images in most cases. This situation will improve with the availability of future high-resolution SARs such as RADARSAT-2 SAR in fine resolution mode (2004) and TerraSAR-X (2005) which will offer significantly reduced speckle noise fluctuations at comparable spatial resolutions and thus a much better visibility of small image variations on spatial scales on the order of a few hundred meters

    Microwave remote sensing from space

    Get PDF
    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms--soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries

    Local unified models of backscattering from ocean-like surfaces at moderate incidence angles

    Get PDF
    6 pagesInternational audienceIn the context of electromagnetic wave backscattering from ocean-like surfaces, by using the SSA-1 model, Bourlier et al. proposed a technique to reduce the number of numerical integrations to two for easier numerical implementation. To be consistent with microwave measurements, closed-form expressions of the Fourier coefficients of the backscattering RCS are obtained. For Gaussian statistics, previous work is extended to kernels of unified models expanded up to the order two, like the SSA2 and LCA2
    corecore