735 research outputs found

    Metaheuristics for the unit commitment problem : The Constraint Oriented Neighbourhoods search strategy

    Get PDF
    Tese de mestrado. Faculdade de Engenharia. Universidade do Porto. 199

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Unit Commitment Problem in Electrical Power System: A Literature Review

    Get PDF
    Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties

    Short Term Unit Commitment as a Planning Problem

    Get PDF
    ‘Unit Commitment’, setting online schedules for generating units in a power system to ensure supply meets demand, is integral to the secure, efficient, and economic daily operation of a power system. Conflicting desires for security of supply at minimum cost complicate this. Sustained research has produced methodologies within a guaranteed bound of optimality, given sufficient computing time. Regulatory requirements to reduce emissions in modern power systems have necessitated increased renewable generation, whose output cannot be directly controlled, increasing complex uncertainties. Traditional methods are thus less efficient, generating more costly schedules or requiring impractical increases in solution time. Meta-Heuristic approaches are studied to identify why this large body of work has had little industrial impact despite continued academic interest over many years. A discussion of lessons learned is given, and should be of interest to researchers presenting new Unit Commitment approaches, such as a Planning implementation. Automated Planning is a sub-field of Artificial Intelligence, where a timestamped sequence of predefined actions manipulating a system towards a goal configuration is sought. This differs from previous Unit Commitment formulations found in the literature. There are fewer times when a unit’s online status switches, representing a Planning action, than free variables in a traditional formulation. Efficient reasoning about these actions could reduce solution time, enabling Planning to tackle Unit Commitment problems with high levels of renewable generation. Existing Planning formulations for Unit Commitment have not been found. A successful formulation enumerating open challenges would constitute a good benchmark problem for the field. Thus, two models are presented. The first demonstrates the approach’s strength in temporal reasoning over numeric optimisation. The second balances this but current algorithms cannot handle it. Extensions to an existing algorithm are proposed alongside a discussion of immediate challenges and possible solutions. This is intended to form a base from which a successful methodology can be developed

    Microgrid Optimal Scheduling Considering Impact of High Penetration Wind Generation

    Get PDF
    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations

    Optimal Participation of Power Generating Companies in a Deregulated Electricity Market

    Get PDF
    The function of an electric utility is to make stable electric power available to consumers in an efficient manner. This would include power generation, transmission, distribution and retail sales. Since the early nineties however, many utilities have had to change from the vertically integrated structure to a deregulated system where the services were unbundled due to a rapid demand growth and need for better economic benefits. With the unbundling of services came competition which pushed innovation and led to the improvement of efficiency. In a deregulated power system, power generators submit offers to sell energy and operating reserve in the electricity market. The market can be described more as oligopolistic with a System Operator in-charge of the power grid, matching the offers to supply with the bid in demands to determine the market clearing price for each interval. This price is what is paid to all generators. Energy is sold in the day-ahead market where offers are submitted hours prior to when it is needed. The spot energy market caters to unforeseen rise in load demand and thus commands a higher price for electrical energy than the day-ahead market. A generating company can improve its profit by using an appropriate bidding strategy. This improvement is affected by the nature of bids from competitors and uncertainty in demand. In a sealed bid auction, bids are submitted simultaneously within a timeframe and are confidential, thus a generator has no information on rivals’ bids. There have been studies on methods used by generators to build optimal offers considering competition. However, many of these studies base estimations of rivals’ behaviour on analysis with sufficient bidding history data from the market. Historical data on bidding behaviour may not be readily available in practical systems. The work reported in this thesis explores ways a generator can make security-constrained offers in different markets considering incomplete market information. It also incorporates possible uncertainty in load forecasts. The research methodology used in this thesis is based on forecasting and optimization. Forecasts of market clearing price for each market interval are calculated and used in the objective function of profit maximization to get maximum benefit at the interval. Making these forecasts includes competition into the bid process. Results show that with information on historical data available, a generator can make adequate short-term analysis on market behaviour and thus optimize its benefits for the period. This thesis provides new insights into power generators’ approach in making optimal bids to maximize market benefits

    A memory-integrated artificial bee algorithm for heuristic optimisation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Master of Science by ResearchAccording to studies about bee swarms, they use special techniques for foraging and they are always able to find notified food sources with exact coordinates. In order to succeed in food source exploration, the information about food sources is transferred between employed bees and onlooker bees via waggle dance. In this study, bee colony behaviours are imitated for further search in one of the common real world problems. Traditional solution techniques from literature may not obtain sufficient results; therefore other techniques have become essential for food source exploration. In this study, artificial bee colony (ABC) algorithm is used as a base to fulfil this purpose. When employed and onlooker bees are searching for better food sources, they just memorize the current sources and if they find better one, they erase the all information about the previous best food source. In this case, worker bees may visit same food source repeatedly and this circumstance causes a hill climbing in search. The purpose of this study is exploring how to embed a memory system in ABC algorithm to avoid mentioned repetition. In order to fulfil this intention, a structure of Tabu Search method -Tabu List- is applied to develop a memory system. In this study, we expect that a memory system embedded ABC algorithm provides a further search in feasible area to obtain global optimum or obtain better results in comparison with classic ABC algorithm. Results show that, memory idea needs to be improved to fulfil the purpose of this study. On the other hand, proposed memory idea can be integrated other algorithms or problem types to observe difference
    • 

    corecore