572 research outputs found

    Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Remote data integrity checking (RDIC) enables a data storage server, such as a cloud server, to prove to a verifier that it is actually storing a data owner’s data honestly. To date, a number of RDIC protocols have been proposed in the literature, but almost all the constructions suffer from the issue of a complex key management, that is, they rely on the expensive public key infrastructure (PKI), which might hinder the deployment of RDIC in practice. In this paper, we propose a new construction of identity-based (ID-based) RDIC protocol by making use of key-homomorphic cryptographic primitive to reduce the system complexity and the cost for establishing and managing the public key authentication framework in PKI based RDIC schemes. We formalize ID-based RDIC and its security model including security against a malicious cloud server and zero knowledge privacy against a third party verifier. We then provide a concrete construction of ID-based RDIC scheme which leaks no information of the stored files to the verifier during the RDIC process. The new construction is proven secure against the malicious server in the generic group model and achieves zero knowledge privacy against a verifier. Extensive security analysis and implementation results demonstrate that the proposed new protocol is provably secure and practical in the real-world applications.This work is supported by the National Natural Science Foundation of China (61501333,61300213,61272436,61472083), Fok Ying Tung Education Foundation (141065), Program for New Century Excellent Talents in Fujian University (JA1406

    Secure data storage and retrieval in cloud computing

    Get PDF
    Nowadays cloud computing has been widely recognised as one of the most inuential information technologies because of its unprecedented advantages. In spite of its widely recognised social and economic benefits, in cloud computing customers lose the direct control of their data and completely rely on the cloud to manage their data and computation, which raises significant security and privacy concerns and is one of the major barriers to the adoption of public cloud by many organisations and individuals. Therefore, it is desirable to apply practical security approaches to address the security risks for the wide adoption of cloud computing

    Ownership-hidden group-oriented proofs of storage from pre-homomorphic signatures

    Get PDF

    Cryptography for Big Data Security

    Get PDF
    As big data collection and analysis becomes prevalent in today’s computing environments there is a growing need for techniques to ensure security of the collected data. To make matters worse, due to its large volume and velocity, big data is commonly stored on distributed or shared computing resources not fully controlled by the data owner. Thus, tools are needed to ensure both the confidentiality of the stored data and the integrity of the analytics results even in untrusted environments. In this chapter, we present several cryptographic approaches for securing big data and discuss the appropriate use scenarios for each. We begin with the problem of securing big data storage. We first address the problem of secure block storage for big data allowing data owners to store and retrieve their data from an untrusted server. We present techniques that allow a data owner to both control access to their data and ensure that none of their data is modified or lost while in storage. However, in most big data applications, it is not sufficient to simply store and retrieve one’s data and a search functionality is necessary to allow one to select only the relevant data. Thus, we present several techniques for searchable encryption allowing database- style queries over encrypted data. We review the performance, functionality, and security provided by each of these schemes and describe appropriate use-cases. However, the volume of big data often makes it infeasible for an analyst to retrieve all relevant data. Instead, it is desirable to be able to perform analytics directly on the stored data without compromising the confidentiality of the data or the integrity of the computation results. We describe several recent cryptographic breakthroughs that make such processing possible for varying classes of analytics. We review the performance and security characteristics of each of these schemes and summarize how they can be used to protect big data analytics especially when deployed in a cloud setting. We hope that the exposition in this chapter will raise awareness of the latest types of tools and protections available for securing big data. We believe better understanding and closer collaboration between the data science and cryptography communities will be critical to enabling the future of big data processing

    Seventh International Joint Conference on Electronic Voting

    Get PDF
    This volume contains papers presented at E-Vote-ID 2022, the Seventh International JointConference on Electronic Voting, held during October 4–7, 2022. This was the first in-personconference following the COVID-19 pandemic, and, as such, it was a very special event forthe community since we returned to the traditional venue in Bregenz, Austria. The E-Vote-IDconference resulted from merging EVOTE and Vote-ID, and 18 years have now elapsed sincethe first EVOTE conference in Austria.Since that conference in 2004, over 1500 experts have attended the venue, including scholars,practitioners, authorities, electoral managers, vendors, and PhD students. E-Vote-ID collectsthe most relevant debates on the development of electronic voting, from aspects relating tosecurity and usability through to practical experiences and applications of voting systems, alsoincluding legal, social, or political aspects, amongst others, turning out to be an importantglobal referent on these issues
    • …
    corecore