78 research outputs found

    Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants for Copy-Move Forgery Detection

    Full text link
    Copy-move forgery is a manipulation of copying and pasting specific patches from and to an image, with potentially illegal or unethical uses. Recent advances in the forensic methods for copy-move forgery have shown increasing success in detection accuracy and robustness. However, for images with high self-similarity or strong signal corruption, the existing algorithms often exhibit inefficient processes and unreliable results. This is mainly due to the inherent semantic gap between low-level visual representation and high-level semantic concept. In this paper, we present a very first study of trying to mitigate the semantic gap problem in copy-move forgery detection, with spatial pooling of local moment invariants for midlevel image representation. Our detection method expands the traditional works on two aspects: 1) we introduce the bag-of-visual-words model into this field for the first time, may meaning a new perspective of forensic study; 2) we propose a word-to-phrase feature description and matching pipeline, covering the spatial structure and visual saliency information of digital images. Extensive experimental results show the superior performance of our framework over state-of-the-art algorithms in overcoming the related problems caused by the semantic gap.Comment: 13 pages, 11 figure

    Fusion of block and keypoints based approaches for effective copy-move image forgery detection

    Get PDF
    Keypoint-based and block-based methods are two main categories of techniques for detecting copy-move forged images, one of the most common digital image forgery schemes. In general, block-based methods suffer from high computational cost due to the large number of image blocks used and fail to handle geometric transformations. On the contrary, keypoint-based approaches can overcome these two drawbacks yet are found difficult to deal with smooth regions. As a result, fusion of these two approaches is proposed for effective copy-move forgery detection. First, our scheme adaptively determines an appropriate initial size of regions to segment the image into non-overlapped regions. Feature points are extracted as keypoints using the scale invariant feature transform (SIFT) from the image. The ratio between the number of keypoints and the total number of pixels in that region is used to classify the region into smooth or non-smooth (keypoints) regions. Accordingly, block based approach using Zernike moments and keypoint based approach using SIFT along with filtering and post-processing are respectively applied to these two kinds of regions for effective forgery detection. Experimental results show that the proposed fusion scheme outperforms the keypoint-based method in reliability of detection and the block-based method in efficiency

    Detecting Image Brush Editing Using the Discarded Coefficients and Intentions

    Get PDF
    This paper describes a quick and simple method to detect brush editing in JPEG images. The novelty of the proposed method is based on detecting the discarded coefficients during the quantization of the image. Another novelty of this paper is the development of a subjective metric named intentions. The method directly analyzes the allegedly tampered image and generates a forgery mask indicating forgery evidence for each image block. The experiments show that our method works especially well in detecting brush strokes, and it works reasonably well with added captions and image splicing. However, the method is less effective detecting copy-moved and blurred regions. This means that our method can effectively contribute to implementing a complete imagetampering detection tool. The editing operations for which our method is less effective can be complemented with methods more adequate to detect them

    Copy-move forgery detection using combined features and transitive matching

    Get PDF
    Recently, the research of Internet of Things (IoT) and Multimedia Big Data (MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia data, which can be tampered easily. Therefore, the research of multimedia forensics is necessary. Copy-move is an important branch of multimedia forensics. In this paper, a novel copy-move forgery detection scheme using combined features and transitive matching is proposed. First, SIFT and LIOP are extracted as combined features from the input image. Second, transitive matching is used to improve the matching relationship. Third, a filtering approach using image segmentation is proposed to filter out false matches. Fourth, affine transformations are estimated between these image patches. Finally, duplicated regions are located based on those affine transformations. The experimental results demonstrate that the proposed scheme can achieve much better detection results on the public database under various attacks

    Copy-move forgery detection in digital images

    Get PDF
    The ready availability of image-editing software makes it important to ensure the authenticity of images. This thesis concerns the detection and localization of cloning, or Copy-Move Forgery (CMF), which is the most common type of image tampering, in which part(s) of the image are copied and pasted back somewhere else in the same image. Post-processing can be used to produce more realistic doctored images and thus can increase the difficulty of detecting forgery. This thesis presents three novel methods for CMF detection, using feature extraction, surface fitting and segmentation. The Dense Scale Invariant Feature Transform (DSIFT) has been improved by using a different method to estimate the canonical orientation of each circular block. The Fitting Function Rotation Invariant Descriptor (FFRID) has been developed by using the least squares method to fit the parameters of a quadratic function on each block curvatures. In the segmentation approach, three different methods were tested: the SLIC superpixels, the Bag of Words Image and the Rolling Guidance filter with the multi-thresholding method. We also developed the Segment Gradient Orientation Histogram (SGOH) to describe the gradient of irregularly shaped blocks (segments). The experimental results illustrate that our proposed algorithms can detect forgery in images containing copy-move objects with different types of transformation (translation, rotation, scaling, distortion and combined transformation). Moreover, the proposed methods are robust to post-processing (i.e. blurring, brightness change, colour reduction, JPEG compression, variations in contrast and added noise) and can detect multiple duplicated objects. In addition, we developed a new method to estimate the similarity threshold for each image by optimizing a cost function based probability distribution. This method can detect CMF better than using a fixed threshold for all the test images, because our proposed method reduces the false positive and the time required to estimate one threshold for different images in the dataset. Finally, we used the hysteresis to decrease the number of false matches and produce the best possible result

    Classification and evaluation of digital forensic tools

    Get PDF
    Digital forensic tools (DFTs) are used to detect the authenticity of digital images. Different DFTs have been developed to detect the forgery like (i) forensic focused operating system, (ii) computer forensics, (iii) memory forensics, (iv) mobile device forensics, and (v) software forensics tools (SFTs). These tools are dedicated to detect the forged images depending on the type of the applications. Based on our review, we found that in literature of the DFTs less attention is given to the evaluation and analysis of the forensic tools. Among various DFTs, we choose SFTs because it is concerned with the detection of the forged digital images. Therefore,the purpose of this study is to classify the different DFTs and evaluate the software forensic tools (SFTs) based on the different features which are present in the SFTs. In our work, we evaluate the following five SFTs, i.e.,“FotoForensics”, “JPEGsnoop”, “Ghiro”, “Forensically”, and “Izitru”, based on different features so that new research directions can be identified for the development of the SFTs

    Copy-move forgery detection: a survey on time complexity issues and solutions

    Get PDF
    As the image processing especially image editing software evolve, more image manipulations were possible to be done, thus authentication of image become a very crucial task. Copy-move forgery detection (CMFD), a popular research focus in digital image forensic, is used to authenticate an image by detecting malicious copy-move tampering in an image. Copy-move forgery occurs when a region in an image is copied and paste into the same image. There were many survey and review papers discussed about CMFD robustness and accuracy yet less attention was given to performance and time complexity. In this paper, we attempts to highlight the key factors contribute to the time complexity issue. Before that, the CMFD processes were first explained for better understanding. The trends of tackling those issues are then explored. Finally, numbers of proposed solutions will be outlined to conclude this paper
    • …
    corecore