1,313 research outputs found

    Rolling Horizon Evolutionary Algorithms for General Video Game Playing

    Get PDF
    IEEE Game-playing Evolutionary Algorithms, specifically Rolling Horizon Evolutionary Algorithms, have recently managed to beat the state of the art in win rate across many video games. However, the best results in a game are highly dependent on the specific configuration of modifications introduced over several papers, each adding additional parameters to the core algorithm. Further, the best previously published parameters have been found from only a few human-picked combinations, as the possibility space has grown beyond exhaustive search. This paper presents the state of the art in Rolling Horizon Evolutionary Algorithms, combining all modifications described in literature, as well as new ones. We then use a parameter optimiser, the N-Tuple Bandit Evolutionary Algorithm, to find the best combination of parameters in 20 games from the General Video Game AI Framework. Further, we analyse the algorithm's parameters and some interesting combinations revealed through the optimisation process. Lastly, we find new state of the art solutions on several games by automatically exploring the large parameter space of RHEA

    Statistical Tree-based Population Seeding for Rolling Horizon EAs in General Video Game Playing

    Get PDF
    Multiple Artificial Intelligence (AI) methods have been proposed over recent years to create controllers to play multiple video games of different nature and complexity without revealing the specific mechanics of each of these games to the AI methods. In recent years, Evolutionary Algorithms (EAs) employing rolling horizon mechanisms have achieved extraordinary results in these type of problems. However, some limitations are present in Rolling Horizon EAs making it a grand challenge of AI. These limitations include the wasteful mechanism of creating a population and evolving it over a fraction of a second to propose an action to be executed by the game agent. Another limitation is to use a scalar value (fitness value) to direct evolutionary search instead of accounting for a mechanism that informs us how a particular agent behaves during the rolling horizon simulation. In this work, we address both of these issues. We introduce the use of a statistical tree that tackles the latter limitation. Furthermore, we tackle the former limitation by employing a mechanism that allows us to seed part of the population using Monte Carlo Tree Search, a method that has dominated multiple General Video Game AI competitions. We show how the proposed novel mechanism, called Statistical Tree-based Population Seeding, achieves better results compared to vanilla Rolling Horizon EAs in a set of 20 games, including 10 stochastic and 10 deterministic games

    Warm-Start AlphaZero Self-Play Search Enhancements

    Get PDF
    Recently, AlphaZero has achieved landmark results in deep reinforcement learning, by providing a single self-play architecture that learned three different games at super human level. AlphaZero is a large and complicated system with many parameters, and success requires much compute power and fine-tuning. Reproducing results in other games is a challenge, and many researchers are looking for ways to improve results while reducing computational demands. AlphaZero's design is purely based on self-play and makes no use of labeled expert data ordomain specific enhancements; it is designed to learn from scratch. We propose a novel approach to deal with this cold-start problem by employing simple search enhancements at the beginning phase of self-play training, namely Rollout, Rapid Action Value Estimate (RAVE) and dynamically weighted combinations of these with the neural network, and Rolling Horizon Evolutionary Algorithms (RHEA). Our experiments indicate that most of these enhancements improve the performance of their baseline player in three different (small) board games, with especially RAVE based variants playing strongly

    The 2016 Two-Player GVGAI Competition

    Get PDF
    This paper showcases the setting and results of the first Two-Player General Video Game AI competition, which ran in 2016 at the IEEE World Congress on Computational Intelligence and the IEEE Conference on Computational Intelligence and Games. The challenges for the general game AI agents are expanded in this track from the single-player version, looking at direct player interaction in both competitive and cooperative environments of various types and degrees of difficulty. The focus is on the agents not only handling multiple problems, but also having to account for another intelligent entity in the game, who is expected to work towards their own goals (winning the game). This other player will possibly interact with first agent in a more engaging way than the environment or any non-playing character may do. The top competition entries are analyzed in detail and the performance of all agents is compared across the four sets of games. The results validate the competition system in assessing generality, as well as showing Monte Carlo Tree Search continuing to dominate by winning the overall Championship. However, this approach is closely followed by Rolling Horizon Evolutionary Algorithms, employed by the winner of the second leg of the contest

    General Video Game AI: A Multitrack Framework for Evaluating Agents, Games, and Content Generation Algorithms

    Get PDF
    General Video Game Playing (GVGP) aims at designing an agent that is capable of playing multiple video games with no human intervention. In 2014, The General Video Game AI (GVGAI) competition framework was created and released with the purpose of providing researchers a common open-source and easy to use platform for testing their AI methods with potentially infinity of games created using Video Game Description Language (VGDL). The framework has been expanded into several tracks during the last few years to meet the demand of different research directions. The agents are required either to play multiple unknown games with or without access to game simulations, or to design new game levels or rules. This survey paper presents the VGDL, the GVGAI framework, existing tracks, and reviews the wide use of GVGAI framework in research, education and competitions five years after its birth. A future plan of framework improvements is also described.Comment: 20 pages, 1 figure, accepted by IEEE To
    corecore