2,891 research outputs found

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Get PDF
    Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p

    TCP performance enhancement in wireless networks via adaptive congestion control and active queue management

    Get PDF
    The transmission control protocol (TCP) exhibits poor performance when used in error-prone wireless networks. Remedy to this problem has been an active research area. However, a widely accepted and adopted solution is yet to emerge. Difficulties of an acceptable solution lie in the areas of compatibility, scalability, computational complexity and the involvement of intermediate routers and switches. This dissertation rexriews the current start-of-the-art solutions to TCP performance enhancement, and pursues an end-to-end solution framework to the problem. The most noticeable cause of the performance degradation of TCP in wireless networks is the higher packet loss rate as compared to that in traditional wired networks. Packet loss type differentiation has been the focus of many proposed TCP performance enhancement schemes. Studies conduced by this dissertation research suggest that besides the standard TCP\u27s inability of discriminating congestion packet losses from losses related to wireless link errors, the standard TCP\u27s additive increase and multiplicative decrease (AIMD) congestion control algorithm itself needs to be redesigned to achieve better performance in wireless, and particularly, high-speed wireless networks. This dissertation proposes a simple, efficient, and effective end-to-end solution framework that enhances TCP\u27s performance through techniques of adaptive congestion control and active queue management. By end-to-end, it means a solution with no requirement of routers being wireless-aware or wireless-specific . TCP-Jersey has been introduced as an implementation of the proposed solution framework, and its performance metrics have been evaluated through extensive simulations. TCP-Jersey consists of an adaptive congestion control algorithm at the source by means of the source\u27s achievable rate estimation (ARE) —an adaptive filter of packet inter-arrival times, a congestion indication algorithm at the links (i.e., AQM) by means of packet marking, and a effective loss differentiation algorithm at the source by careful examination of the congestion marks carried by the duplicate acknowledgment packets (DUPACK). Several improvements to the proposed TCP-Jersey have been investigated, including a more robust ARE algorithm, a less computationally intensive threshold marking algorithm as the AQM link algorithm, a more stable congestion indication function based on virtual capacity at the link, and performance results have been presented and analyzed via extensive simulations of various network configurations. Stability analysis of the proposed ARE-based additive increase and adaptive decrease (AJAD) congestion control algorithm has been conducted and the analytical results have been verified by simulations. Performance of TCP-Jersey has been compared to that of a perfect , but not practical, TCP scheme, and encouraging results have been observed. Finally the framework of the TCP-Jersey\u27s source algorithm has been extended and generalized for rate-based congestion control, as opposed to TCP\u27s window-based congestion control, to provide a design platform for applications, such as real-time multimedia, that do not use TCP as transport protocol yet do need to control network congestion as well as combat packet losses in wireless networks. In conclusion, the framework architecture presented in this dissertation that combines the adaptive congestion control and active queue management in solving the TCP performance degradation problem in wireless networks has been shown as a promising answer to the problem due to its simplistic design philosophy complete compatibility with the current TCP/IP and AQM practice, end-to-end architecture for scalability, and the high effectiveness and low computational overhead. The proposed implementation of the solution framework, namely TCP-Jersey is a modification of the standard TCP protocol rather than a completely new design of the transport protocol. It is an end-to-end approach to address the performance degradation problem since it does not require split mode connection establishment and maintenance using special wireless-aware software agents at the routers. The proposed solution also differs from other solutions that rely on the link layer error notifications for packet loss differentiation. The proposed solution is also unique among other proposed end-to-end solutions in that it differentiates packet losses attributed to wireless link errors from congestion induced packet losses directly from the explicit congestion indication marks in the DUPACK packets, rather than inferring the loss type based on packet delay or delay jitter as in many other proposed solutions; nor by undergoing a computationally expensive off-line training of a classification model (e.g., HMM), or a Bayesian estimation/detection process that requires estimations of a priori loss probability distributions of different loss types. The proposed solution is also scalable and fully compatible to the current practice in Internet congestion control and queue management, but with an additional function of loss type differentiation that effectively enhances TCP\u27s performance over error-prone wireless networks. Limitations of the proposed solution architecture and areas for future researches are also addressed

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco

    Dual-rate background subtraction approach for estimating traffic queue parameters in urban scenes

    Get PDF
    This study proposes traffic queue-parameter estimation based on background subtraction. An appropriate combination of two background models is used: a short-term model, very sensitive to moving vehicles, and a long-term model capable of retaining as foreground temporarily stopped vehicles at intersections or traffic lights. Experimental results in typical urban scenes demonstrate the suitability of the proposed approach. Its main advantage is the low computational cost, avoiding specific motion detection algorithms or post-processing operations after foreground vehicle detection.Ministerio de Educación y Ciencia DPI2010-19154Consejería de Innovación, Ciencia y Empresa P07-TIC-0262

    Scalable Bandwidth Management in Software-Defined Networks

    Get PDF
    There has been a growing demand to manage bandwidth as the network traffic increases. Network applications such as real time video streaming, voice over IP and video conferencing in IP networks has risen rapidly over the recently and is projected to continue in the future. These applications consume a lot of bandwidth resulting in increasing pressure on the networks. In dealing with such challenges, modern networks must be designed to be application sensitive and be able to offer Quality of Service (QoS) based on application requirements. Network paradigms such as Software Defined Networking (SDN) allows for direct network programmability to change the network behavior to suit the application needs in order to provide solutions to the challenge. In this dissertation, the objective is to research if SDN can provide scalable QoS requirements to a set of dynamic traffic flows. Methods are implemented to attain scalable bandwidth management to provide high QoS with SDN. Differentiated Services Code Point (DSCP) values and DSCP remarking with Meters are used to implement high QoS requirements such that bandwidth guarantee is provided to a selected set of traffic flows. The theoretical methodology is implemented for achieving QoS, experiments are conducted to validate and illustrate that QoS can be implemented in SDN, but it is unable to implement High QoS due to the lack of implementation for Meters with DSCP remarking. The research work presented in this dissertation aims at the identification and addressing the critical aspects related to the SDN based QoS provisioning using flow aggregation techniques. Several tests and demonstrations will be conducted by utilizing virtualization methods. The tests are aimed at supporting the proposed ideas and aims at creating an improved understanding of the practical SDN use cases and the challenges that emerge in virtualized environments. DiffServ Assured Forwarding is chosen as a QoS architecture for implementation. The bandwidth management scalability in SDN is proved based on throughput analysis by considering two conditions i.e 1) Per-flow QoS operation and 2) QoS by using DiffServ operation in the SDN environment with Ryu controller. The result shows that better performance QoS and bandwidth management is achieved using the QoS by DiffServ operation in SDN rather than the per-flow QoS operation

    Simulation and Evaluation of Wired and Wireless Networks with NS2, NS3 and OMNET++

    Get PDF
    Communication systems are emerging rapidly with the revolutionary growth in terms of networking protocols, wired and wireless technologies, user applications and other IEEE standards. Numbers of industrial as well as academic organizations around the globe are bringing in light new innovations and ideas in the field of communication systems. These innovations and ideas require intense evaluation at initial phases of development with the use of real systems in place. Usually the real systems are expensive and not affordable for the evaluation. In this case, network simulators provide a complete cost-effective testbed for the simulation and evaluation of the underlined innovations and ideas. In past, numerous studies were conducted for the performance evaluation of network simulators based on CPU and memory utilization. However, performance evaluation based on other metrics such as congestion window, throughput, delay, packet delivery ratio and packet loss ratio was not conducted intensively. In this thesis, network simulators such as NS2, NS3 and OMNET++ will be evaluated and compared for wired and wireless networks based on congestion window, throughput, delay, packet delivery and packet loss ratio. In the theoretical part, information will be provided about the wired and wireless networks and mathematical interpretation of various components used for these networks. Furthermore, technical details about the network simulators will be presented including architectural design, programming languages and platform libraries. Advantages and disadvantages of these network simulators will also be highlighted. In the last part, the details about the experiments and analysis conducted for wired and wireless networks will be provided. At the end, findings will be concluded and future prospects of the study will be advised.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore