1,819 research outputs found

    Adaptive primal-dual genetic algorithms in dynamic environments

    Get PDF
    This article is placed here with permission of IEEE - Copyright @ 2010 IEEERecently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant 70431003 and Grant 70671020, by the National Innovation Research Community Science Foundation of China under Grant 60521003, by the National Support Plan of China under Grant 2006BAH02A09, by the Engineering and Physical Sciences Research Council (EPSRC) of U.K. under Grant EP/E060722/1, and by the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    A multi-agent based evolutionary algorithm in non-stationary environments

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn this paper, a multi-agent based evolutionary algorithm (MAEA) is introduced to solve dynamic optimization problems. The agents simulate living organism features and co-evolve to find optimum. All agents live in a lattice like environment, where each agent is fixed on a lattice point. In order to increase the energy, agents can compete with their neighbors and can also acquire knowledge based on statistic information. In order to maintain the diversity of the population, the random immigrants and adaptive primal dual mapping schemes are used. Simulation experiments on a set of dynamic benchmark problems show that MAEA can obtain a better performance in non-stationary environments in comparison with several peer genetic algorithms.This work was suported by the Key Program of National Natural Science Foundation of China under Grant No. 70431003, the Science Fund for Creative Research Group of the National Natural Science Foundation of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09, and the Engineering and Physical Sciences Research Council of the United Kingdom under Grant No. EP/E060722/1

    A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2008Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 70431003 and 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, and the National Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Experimental study on population-based incremental learning algorithms for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2005.Evolutionary algorithms have been widely used for stationary optimization problems. However, the environments of real world problems are often dynamic. This seriously challenges traditional evolutionary algorithms. In this paper, the application of population-based incremental learning (PBIL) algorithms, a class of evolutionary algorithms, for dynamic problems is investigated. Inspired by the complementarity mechanism in nature a Dual PBIL is proposed, which operates on two probability vectors that are dual to each other with respect to the central point in the genotype space. A diversity maintaining technique of combining the central probability vector into PBIL is also proposed to improve PBILs adaptability in dynamic environments. In this paper, a new dynamic problem generator that can create required dynamics from any binary-encoded stationary problem is also formalized. Using this generator, a series of dynamic problems were systematically constructed from several benchmark stationary problems and an experimental study was carried out to compare the performance of several PBIL algorithms and two variants of standard genetic algorithm. Based on the experimental results, we carried out algorithm performance analysis regarding the weakness and strength of studied PBIL algorithms and identified several potential improvements to PBIL for dynamic optimization problems.This work was was supported by UK EPSRC under Grant GR/S79718/01

    Population-based incremental learning with memory scheme for changing environments

    Get PDF
    Copyright @ 2005 ACMIn recent years there has been a growing interest in studying evolutionary algorithms for dynamic optimization problems due to its importance in real world applications. Several approaches have been developed, such as the memory scheme. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of evolutionary algorithms, for dynamic optimization problems. A PBIL-specific memory scheme is proposed to improve its adaptability in dynamic environments. In this memory scheme the working probability vector is stored together with the best sample it creates in the memory and is used to reactivate old environments when change occurs. Experimental study based on a series of dynamic environments shows the efficiency of the memory scheme for PBILs in dynamic environments. In this paper, the relationship between the memory scheme and the multipopulation scheme for PBILs in dynamic environments is also investigated. The experimental results indicate a negative interaction of the multi-population scheme on the memory scheme for PBILs in the dynamic test environments

    Learning the dominance in diploid genetic algorithms for changing optimization problems

    Get PDF
    Using diploid representation with dominance scheme is one of the approaches developed for genetic algorithms to address dynamic optimization problems. This paper proposes an adaptive dominance mechanism for diploid genetic algorithms in dynamic environments. In this scheme, the genotype to phenotype mapping in each gene locus is controlled by a dominance probability, which is learnt adaptively during the searching progress. The proposed dominance scheme isexperimentally compared to two other schemes for diploid genetic algorithms. Experimental results validate the efficiency of the dominance learning scheme
    corecore