219 research outputs found

    Linear Transmit-Receive Strategies for Multi-user MIMO Wireless Communications

    Get PDF
    Die Notwendigkeit zur Unterdrueckung von Interferenzen auf der einen Seite und zur Ausnutzung der durch Mehrfachzugriffsverfahren erzielbaren Gewinne auf der anderen Seite rueckte die raeumlichen Mehrfachzugriffsverfahren (Space Division Multiple Access, SDMA) in den Fokus der Forschung. Ein Vertreter der raeumlichen Mehrfachzugriffsverfahren, die lineare Vorkodierung, fand aufgrund steigender Anzahl an Nutzern und Antennen in heutigen und zukuenftigen Mobilkommunikationssystemen besondere Beachtung, da diese Verfahren das Design von Algorithmen zur Vorcodierung vereinfachen. Aus diesem Grund leistet diese Dissertation einen Beitrag zur Entwicklung linearer Sende- und Empfangstechniken fuer MIMO-Technologie mit mehreren Nutzern. Zunaechst stellen wir ein Framework zur Approximation des Datendurchsatzes in Broadcast-MIMO-Kanaelen mit mehreren Nutzern vor. In diesem Framework nehmen wir das lineare Vorkodierverfahren regularisierte Blockdiagonalisierung (RBD) an. Durch den Vergleich von Dirty Paper Coding (DPC) und linearen Vorkodieralgorithmen (z.B. Zero Forcing (ZF) und Blockdiagonalisierung (BD)) ist es uns moeglich, untere und obere Schranken fuer den Unterschied bezueglich Datenraten und bezueglich Leistung zwischen beiden anzugeben. Im Weiteren entwickeln wir einen Algorithmus fuer koordiniertes Beamforming (Coordinated Beamforming, CBF), dessen Loesung sich in geschlossener Form angeben laesst. Dieser CBF-Algorithmus basiert auf der SeDJoCo-Transformation und loest bisher vorhandene Probleme im Bereich CBF. Im Anschluss schlagen wir einen iterativen CBF-Algorithmus namens FlexCoBF (flexible coordinated beamforming) fuer MIMO-Broadcast-Kanaele mit mehreren Nutzern vor. Im Vergleich mit bis dato existierenden iterativen CBF-Algorithmen kann als vielversprechendster Vorteil die freie Wahl der linearen Sende- und Empfangsstrategie herausgestellt werden. Das heisst, jede existierende Methode der linearen Vorkodierung kann als Sendestrategie genutzt werden, waehrend die Strategie zum Empfangsbeamforming frei aus MRC oder MMSE gewaehlt werden darf. Im Hinblick auf Szenarien, in denen Mobilfunkzellen in Clustern zusammengefasst sind, erweitern wir FlexCoBF noch weiter. Hier wurde das Konzept der koordinierten Mehrpunktverbindung (Coordinated Multipoint (CoMP) transmission) integriert. Zuletzt stellen wir drei Moeglichkeiten vor, Kanalzustandsinformationen (Channel State Information, CSI) unter verschiedenen Kanalumstaenden zu erlangen. Die Qualitaet der Kanalzustandsinformationen hat einen starken Einfluss auf die Guete des Uebertragungssystems. Die durch unsere neuen Algorithmen erzielten Verbesserungen haben wir mittels numerischer Simulationen von Summenraten und Bitfehlerraten belegt.In order to combat interference and exploit large multiplexing gains of the multi-antenna systems, a particular interest in spatial division multiple access (SDMA) techniques has emerged. Linear precoding techniques, as one of the SDMA strategies, have obtained more attention due to the fact that an increasing number of users and antennas involved into the existing and future mobile communication systems requires a simplification of the precoding design. Therefore, this thesis contributes to the design of linear transmit and receive strategies for multi-user MIMO broadcast channels in a single cell and clustered multiple cells. First, we present a throughput approximation framework for multi-user MIMO broadcast channels employing regularized block diagonalization (RBD) linear precoding. Comparing dirty paper coding (DPC) and linear precoding algorithms (e.g., zero forcing (ZF) and block diagonalization (BD)), we further quantify lower and upper bounds of the rate and power offset between them as a function of the system parameters such as the number of users and antennas. Next, we develop a novel closed-form coordinated beamforming (CBF) algorithm (i.e., SeDJoCo based closed-form CBF) to solve the existing open problem of CBF. Our new algorithm can support a MIMO system with an arbitrary number of users and transmit antennas. Moreover, the application of our new algorithm is not only for CBF, but also for blind source separation (BSS), since the same mathematical model has been used in BSS application.Then, we further propose a new iterative CBF algorithm (i.e., flexible coordinated beamforming (FlexCoBF)) for multi-user MIMO broadcast channels. Compared to the existing iterative CBF algorithms, the most promising advantage of our new algorithm is that it provides freedom in the choice of the linear transmit and receive beamforming strategies, i.e., any existing linear precoding method can be chosen as the transmit strategy and the receive beamforming strategy can be flexibly chosen from MRC or MMSE receivers. Considering clustered multiple cell scenarios, we extend the FlexCoBF algorithm further and introduce the concept of the coordinated multipoint (CoMP) transmission. Finally, we present three strategies for channel state information (CSI) acquisition regarding various channel conditions and channel estimation strategies. The CSI knowledge is required at the base station in order to implement SDMA techniques. The quality of the obtained CSI heavily affects the system performance. The performance enhancement achieved by our new strategies has been demonstrated by numerical simulation results in terms of the system sum rate and the bit error rate

    Blind channel estimation and signal retrieving for MIMO relay systems

    Get PDF
    In this paper, we propose a blind channel estimation and signal retrieving algorithm for two-hop multiple-input multiple-output (MIMO) relay systems. This new algorithm integrates two blind source separation (BSS) methods to estimate the individual channel state information (CSI) of the source-relay and relay-destination links. In particular, a first-order Z-domain precoding technique is developed for the blind estimation of the relay-destination channel matrix, where the signals received at the relay node are pre-processed by a set of precoders before being transmitted to the destination node. With the estimated signals at the relay node, we propose an algorithm based on the constant modulus and signal mutual information properties to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, the proposed algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Channel estimation in massive MIMO systems

    Get PDF
    Last years were characterized by a great demand for high data throughput, good quality and spectral efficiency in wireless communication systems. Consequently, a revolution in cellular networks has been set in motion towards to 5G. Massive multiple-input multiple-output (MIMO) is one of the new concepts in 5G and the idea is to scale up the known MIMO systems in unprecedented proportions, by deploying hundreds of antennas at base stations. Although, perfect channel knowledge is crucial in these systems for user and data stream separation in order to cancel interference. The most common way to estimate the channel is based on pilots. However, problems such as interference and pilot contamination (PC) can arise due to the multiplicity of channels in the wireless link. Therefore, it is crucial to define techniques for channel estimation that together with pilot contamination mitigation allow best system performance and at same time low complexity. This work introduces a low-complexity channel estimation technique based on Zadoff-Chu training sequences. In addition, different approaches were studied towards pilot contamination mitigation and low complexity schemes, with resort to iterative channel estimation methods, semi-blind subspace tracking techniques and matrix inversion substitutes. System performance simulations were performed for the several proposed techniques in order to identify the best tradeoff between complexity, spectral efficiency and system performance

    Large-System Analysis of Correlated MIMO Multiple Access Channels with Arbitrary Signaling in the Presence of Interference

    Get PDF
    Presence of multiple antennas on both sides of a communication channel promises significant improvements in system throughput and power efficiency. In effect, a new clas s of large multiple-input multiple-output (MIMO) communication systems has recently emerged and attracted both scientific and industrial attention. To analyze these systems in realistic scenarios, one has to include such aspects as co-channel interference, multiple access and spatial correlation. In this paper, we study the properties of correlated MIMO multiple-access channels in the presence of external interference. Using the replica method from statistical physics, we derive the ergodic sum-rate of the communication for arbitrary signal constellations when the numbers of antennas at both ends of the channel grow large. Based on these asymptotic expressions, we also address the problem of sum-rate maximization using statistical channel information and linear precoding. The numerical results demonstrate that when the interfering terminals use discrete constellations, the resulting interference becomes easier to handle compared to Gaussian signals. Thus, it may be possible to accommodate more interfering transmitter-receiver pairs within the same area as compare d to the case of Gaussian signals. In addition, we demonstrate numerically for the Gaussian and QPSK signaling schemes that it is possible to design precoder matrices that significantly improve the achievable rates at low-to-mid range of signal-to-noise ratios when compared to isotropic precoding

    An Adaptive Self-Interference Cancelation/Utilization and ICA-Assisted Semi-Blind Full-Duplex Relay System for LLHR IoT

    Get PDF
    In this article, we propose a semi-blind full-duplex (FD) amplify-and-forward (AF) relay system with adaptive self-interference (SI) processing assisted by independent component analysis (ICA) for low-latency and high-reliability (LLHR) Internet of Things (IoT). The SI at FD relay is not necessarily canceled as much as possible like the conventional approaches, but is canceled or utilized based on a signal-to-residual-SI ratio (SRSIR) threshold at relay. According to the selected SI processing mode at relay, an ICA-based adaptive semi-blind scheme is proposed for signal separation and detection at destination. The proposed FD relay system not only features reduced signal processing cost of SI cancelation but also achieves a much higher degree of freedom in signal detection. The resulting bit error rate (BER) performance is robust against a wide range of SRSIR, much better than that of conventional FD systems, and close to the ideal case with perfect channel state information (CSI) and perfect SI cancelation. The proposed system also requires negligible spectral overhead as only a nonredundant precoding is needed for ambiguity elimination in ICA. In addition, the proposed system enables full resource utilization with consecutive data transmission at all time and same frequency, leading to much higher throughput and energy efficiency than the time-splitting and power-splitting-based self-energy recycling approaches that utilize only partial resources. Furthermore, an intensive analysis is provided, where the SRSIR thresholds for the adaptive SI processing mode selection and the BER expressions with ICA incurred ambiguities are derived

    Enforcing Statistical Orthogonality in Massive MIMO Systems via Covariance Shaping

    Full text link
    This paper tackles the problem of downlink transmission in massive multiple-input multiple-output(MIMO) systems where the equipments (UEs) exhibit high spatial correlation and the channel estimation is limited by strong pilot contamination. Signal subspace separation among the UEs is, in fact, rarely realized in practice and is generally beyond the control of the network designer (as it is dictated by the physical scattering environment). In this context, we propose a novel statistical beamforming technique, referred to asMIMO covariance shaping, that exploits multiple antennas at the UEs and leverages the realistic non-Kronecker structure of massive MIMO channels to target a suitable shaping of the channel statistics performed at the UE-side. To optimize the covariance shaping strategies, we propose a low-complexity block coordinate descent algorithm that is proved to converge to a limit point of the original nonconvex problem. For the two-UE case, this is shown to converge to a stationary point of the original problem. Numerical results illustrate the sum-rate performance gains of the proposed method with respect to reference scenarios employing the multiple antennas at the UE for spatial multiplexing.Comment: Submitted for journal publicatio
    corecore